Copper Fox Metals Inc.

SCHAFT CREEK PROJECT: 2008 AND 2009 METEOROLOGY AND AIR QUALITY BASELINE

Rescan™ Tahltan Environmental Consultants Sixth Floor - 1111 West Hastings Street Vancouver, BC Canada V6E 2J3 Tel: (604) 689-9460 Fax: (604) 687-4277

February 2010

SCHAFT CREEK PROJECT 2008 and 2009 Meteorology and Air Quality Baseline

February 2010 Project #1039-001-02

Prepared for: COPPER FOX metals inc.

Copper Fox Metals Inc.

Prepared by:

Rescan[™] Tahltan Environmental Consultants

Executive Summary

The Schaft Creek Project is a proposed copper, gold, molybdenum and silver project in northwest British Columbia. The Environmental Assessment Office of BC has confirmed that the Project requires an environmental assessment be conducted before the Project can advance into the permitting process. As part of the environmental assessment a meteorological and air quality baseline program is needed. A meteorological data collection programme was initiated in 2005 and is currently on going. This report presents meteorological and air quality data from 2008 and 2009.

Automated meteorological stations equipped with sensors for temperature, relative humidity, precipitation, solar radiation, snow depth, wind speed and wind direction were installed at three sites within the Schaft Creek Project area. Snow-water-equivalent (SWE) was measured at two snow survey locations on site. Eight dustfall monitoring locations were used to evaluate the baseline air quality.

Data collection is on-going at Schaft Creek Saddle, Mount LaCasse and Schaft Creek Camp RainWise automated meteorological stations. Schaft Creek Saddle meteorological station was installed in October 2005; the Mount LaCasse and Schaft Creek Camp meteorological station were installed in August 2006. This report covers data up to October 1, 2009. The Camp station is manufactured by RainWise Inc. while the other two are manufactured by Campbell Scientific Canada Corp. Snow surveys were conducted during February, April, and May 2008 at the Skeeter Lake Valley location and northeast of the exploration camp.

The average annual air temperature at the Saddle station (elevation 977 masl) was 0.5°C in 2008, with monthly average air temperatures ranging from -13.3°C in December 2008 to 11.1°C in August 2008. The hourly minimum temperature recorded in 2008 was -32.4°C (January). The average annual air temperature at the LaCasse station (elevation 1,440 masl) was -1.9°C in 2008, with monthly average air temperatures ranging from -13.4°C in December 2008 to 8.3°C in August 2008. The hourly minimum temperature recorded in 2008 was -34.1°C (February). The Schaft Creek Camp station did not report a continuous data set and is therefore not discussed in terms of average temperatures. A complete data set for 2009 was not available at the time of reporting.

Precipitation recorded at all three meteorological stations during 2008 and 2009 was not reliable due to the lack of maintenance and sensor malfunction. The variations in the seasonal trends of the regional stations within a 100 km radius of the Project indicate that local climatic conditions within the area are not homogeneous and are influenced by both large-scale regional factors such as mountain ranges and the Pacific Ocean, as well as smaller-scale factors such as local topography. A ClimateBC annual precipitation estimate of 1,047 mm was estimated for the Schaft Creek Camp station location.

At the Mount LaCasse station the annual average wind speed was 4.9 m/s during 2008, the monthly average wind speed ranged from 4.1 (August) to 5.8 m/s (October), and the maximum instantaneous wind speed was 22.7 m/s during 2008 (October 2, 2008 at 12:15 AM) and 26.3 m/s during 2009 (January 29, 2009 at 11:22 PM). In general, wind speeds measured at the LaCasse station were higher than at the Saddle station likely due to the exposed location and higher elevation (1,440 masl). The LaCasse station recorded calm wind conditions only 5% and 6% of the time in 2008 and 2009, respectively as compared to the Saddle station which recorded a much higher frequency of calms (i.e., 20% and 45%) for 2008 and

2008 AND 2009 METEOROLOGY AND AIR QUALITY BASELINE

2009. At Mount LaCasse the dominant wind directions were from the south and southeast which combined occurred 64% and 55% of the time during 2008 and 2009, respectively.

The average annual solar radiation measured at Schaft Creek Saddle meteorological station in 2008 was 114 W/m² with monthly averages ranging from 11 (December) to 249 W/m² (June). The maximum hourly average solar radiation value recorded at the Saddle station during 2008 was 945 W/m² on June 9, 2008 at 1400 hours.

The peak snow depth at Saddle station was about 1.5 m in March of 2008 and 2.5 m in March of 2009. The ultrasonic snow depth sensor at LaCasse station malfunctioned during June 2008. Regional Environment Canada snow pillow data from 3 stations close to the Project (Kinaskan Lake, Tumeka Creek, and Wade Lake) also showed significantly higher snow-water-equivalents (SWE) in 2009 with comparison to 2008. Historical regional data show that in general, snow tends to accumulate from January to April or May and then begins to melt. At Wade Lake (4D14P) average SWE peaked at 358 mm in May while SWE at Kinaskan Lake (4D11P) and Tumeka Creek (4D10P) peaked in April at 391 mm and 588 mm, respectively.

Nuisance or fugitive dust from mining and mineral processing operations is potentially an issue for the surrounding environment. In preparation for the future environmental assessment, a baseline air quality monitoring study using dustfall collectors took place in the summer and fall of 2007 and 2008. Eight dustfall stations were established during June 2007. Samples were analyzed at a laboratory in Vancouver for total dustfall, sulphate, nitrate and total metals. All of the total dustfall results were below BC Pollution Control Objectives (1979). Sulphate and nitrate contributions towards potential acid deposition were found to be below critical load estimates for similar regions in Canada when calculated using maximum sulphate and nitrate depositions recorded during the period. Metal content in the dustfall were analyzed but were not interpreted as the majority of the values were below the detection limits. Based on these findings, the air quality at the Schaft Creek Project can be summarized as good since all measured parameters were below the applicable project objectives and guidelines.

Acknowledgements

Acknowledgements

This report was prepared for Copper Fox Metals Inc. by Rescan Tahltan Environmental Consultants. The report was written by Cheryl Christensen (B.Sc.) and Dan Jarratt (P.Eng). Fieldwork was conducted by Dan Jarratt (P. Eng.), Ryan Brantley (M.Sc.), Soren Jensen (M.Sc.), Chris Doughty (M.Sc.), Allyson Longmuir (M.Sc.), Amber Lapshinoff (Knight Piesold), and Cameron Butt (Knight Piesold) with assistance from Bill Ostrich, Melissa Louie, and Dennis Day. Accommodation was provided by Copper Fox Metals Ltd. at the Schaft Creek Camp and helicopter support was provided by Quantum Helicopters. Report production was coordinated by Joanna Lerner.

Table of Contents

SCHAFT CREEK PROJECT: 2008 and 2009 Meteorology and Air Quality Baseline

Table of Contents

Execu	itive Sum	imary		i	
Ackno	owledger	ments		iii	
Table	of Conte	ents		V	
	List of	List of Appendices			
	List of	List of Figures			
	List of	List of Tables			
	List of	viii			
1.	Introc	Introduction			
	1.1	Project			
	1.2	Objectives			
2.	Meth	Methods			
	2.1	On-Site	e Meteorological Stations		
		2.1.1	Mount LaCasse and Saddle Meteorology Stations		
		2.1.2	Camp Meteorology Station		
		2.1.3	Estimating Annual Precipitation		
		2.1.4	Maintenance Work Conducted in 2008 and 2009		
	2.2	Snow Surveys			
	2.3	Manually Collected Data			
	2.4	Historical On-Site Meteorological Data			
	2.5	Region			
	2.6	Dustfa			
3.	Results				
	3.1	Climat			
	3.2	Air Temperature			
	3.3	Precipi	Precipitation		
		3.3.1	On-Site Data	3-10	
		3.3.2	Regional Data	3-14	
	3.4	Wind Speed and Direction		3-15	
	3.5	Solar Radiation			
	3.6	Snow			
		3.6.1	Snow Depth		

2008 AND 2009 METEOROLOGY AND AIR QUALITY BASELINE

		3.6.2	Snow Surveys	.3-22
	3.7	Dustfall		
		3.7.1	Total Dustfall	.3-26
		3.7.2	Acid Deposition	.3-26
		3.7.3	Metal Deposition	.3-32
4.	Summai	<i>т</i> у		4-1
Referen	ces			R-1

List of Appendices

- Appendix 1. Snow Survey Field Data Sheets
- Appendix 2. Manual Measurement Log
- Appendix 3. Dustfall Laboratory Results

List of Figures

FIGURE	PAGE
Figure 1.1-1. Location Map for Schaft Creek Project	1-2
Figure 1.1-2. Schaft Creek Project Mineral Claims	1-3
Figure 1.1-3. Schaft Creek Access Road Mess Creek Valley Option	1-5
Figure 1.1-4. Schaft Creek Project Mine Site	1-6
Figure 1.1-5. Schaft Creek Project - Skeeter Tailings Storage Facility	1-9
Figure 2.1-1. Automated Meteorological Stations for the Schaft Creek Project	2-2
Figure 2.2-1. Snow Course Survey Locations	2-8
Figure 2.6-1. Dustfall Monitoring Locations in the Schaft Creek Project Area	2-11
Figure 3.2-1. Monthly Average Air Temperature at Schaft Creek Saddle, Mount LaCasse and Regional Meteorological Stations	3-11
Figure 3.2-2. Monthly Average Air Temperature at Schaft Creek Saddle, Mount LaCasse, Camp, and Historical Schaft Creek Meteorological Stations	3-12
Figure 3.3-1. Monthly Average Precipitation at Regional and Schaft Creek Project Meteorological Station	ns3-13
Figure 3.4-1. Wind Rose for Schaft Creek Saddle Meteorological Station (2008)	3-17
Figure 3.4-2. Wind Rose for Schaft Creek Saddle Meteorological Station (January to September, 2009)	3-18
Figure 3.4-3. Wind Rose for Mount LaCasse Meteorological Station (2008)	3-19
Figure 3.4-4. Wind Rose for Mount LaCasse Meteorological Station (January to September 2009)	3-20

TABLE OF CONTENTS

Figure 3.5-1. Daily Average Solar Radiation at Schaft Creek Project Meteorological Stations	.3-23
Figure 3.6-1. Snow Depth at Schaft Creek Project Meteorological Stations	.3-24
Figure 3.7-1. Summary of Total Dustfall Summary for the Schaft Creek Project Area	.3-28
Figure 3.7-2. Sulphate Deposition Summary for the Schaft Creek Project Area	.3-30
Figure 3.7-3. Nitrate Deposition Summary for the Schaft Creek Project Area	.3-31

List of Tables

TABLE	PAGE
Table 3.1-1a. 2008 Summary of Meteorological Data from the Saddle Meteorological Station	
Table 3.1-1b. 2009 Summary of Meteorological Data from the Saddle Meteorological Station	3-3
Table 3.1-2a. 2008 Summary of Meteorological Data from the Mount LaCasse Meteorological Station	3-4
Table 3.1-2b. 2009 Summary of Meteorological Data from the Mount LaCasse Meteorological Station	
Table 3.1-3a. 2008 Summary of Meteorological Data from the Camp Meteorological Station	
Table 3.1-3b. 2009 Summary of Meteorological Data from the Camp Meteorological Station	
Table 3.1-4. Average Monthly Data from the Historical Schaft Creek Camp Meteorological Station	
Table 3.1-5. Average Monthly Data from the Bob Quinn Meteorological Station (1977 to 1994)	
Table 3.1-6. Average Monthly Data from the Iskut Ranch Meteorological Station (1976 to 1994)	
Table 3.1-7. Average Monthly Data from the Todagin Ranch Meteorological Station (1976 to 1992)	
Table 3.1-8. Average Monthly Data from the Unuk River Eskay Creek Meteorological Station (1989 to 2002)	
Table 3.3-1. Monthly Observed and Estimated Precipitation from the Schaft Creek Meteorological Statio	ons3-14
Table 3.3-2. Environment Canada Meteorological Stations Near the Schaft Creek Project	3-15
Table 3.4-1. Average Monthly Wind Speed (m/s)	3-16
Table 3.5-1. Average Monthly Solar Radiation (W/m²)	3-22
Table 3.6-1. Snow-Water-Equivalent (mm) for 2008 and 2009 Snow Surveys	3-25
Table 3.7-1. Total Dustfall Results (mg/dm²/day)	3-26
Table 3.7-2. Examples of Dustfall Criteria Levels in Other Jurisdictions	3-27
Table 3.7-3. Forest Soil Critical Loads for Canadian Provinces	3-29
Table 3.7-4. Summary of Sulphate and Nitrate Deposition (mg/dm ² ·day)	3-29
Table 3.7-5. Summary of Maximum Metal Deposition (mg/dm ² ·day)	3-33

List of Plates

PLATE	PAGE
Plate 2.1-1. Mount LaCasse Meteorology Station	2-4
Plate 2.1-2. Schaft Creek Camp Meteorology Station.	2-5
Plate 2.6-1. Baseline dustfall monitoring station FD3, including two individual dustfall canisters (white) surrounded by a wind screen (black) and bird spikes (metal). Two containers are needed to collect a sufficient volume of sample for the list of parameters.	2-10

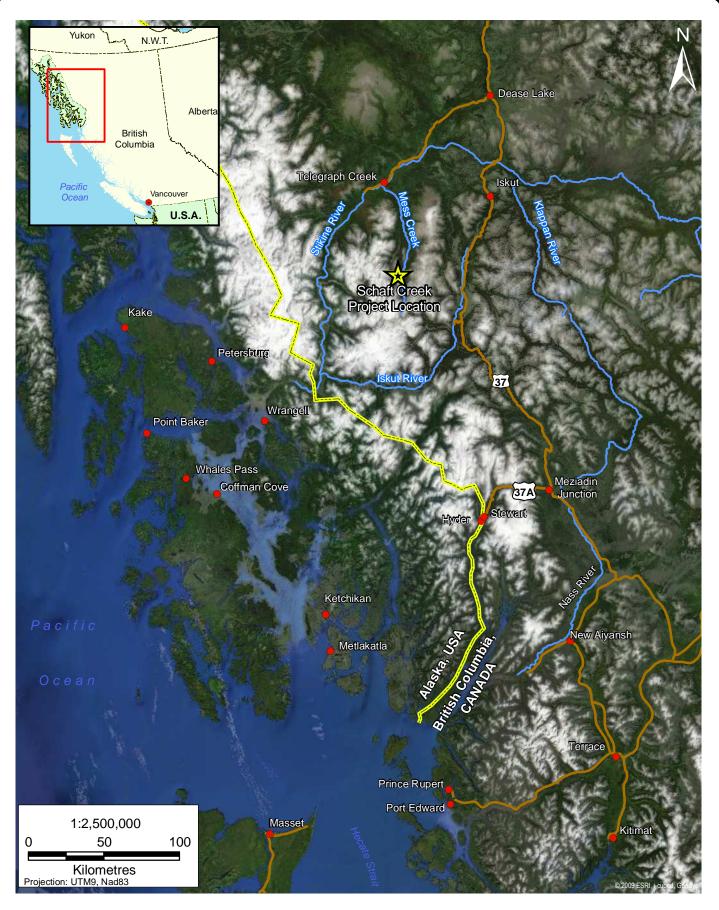
1. Introduction

1. Introduction

Copper Fox Metals Inc. (Copper Fox)'s Schaft Creek Project is currently in the pre-Application phase of the British Columbia environmental assessment process. Baseline meteorology and air quality studies were undertaken by Copper Fox in preparation of an Environmental Assessment Application under the *B.C. Environmental Assessment Act*.

The meteorological baseline program for the Schaft Creek Project began in October 2005 with the installation and commissioning of an automated meteorology station at the Saddle area east of the Schaft Creek exploration camp and west of Mess Creek. Additional automated meteorology stations were installed in 2006 in the Project area. The automated meteorological measurements were augmented by manual snow surveys at selected locations. Below is a description of the methods that were used for the meteorological baseline program along with results from the 2008 and 2009 field studies. Data collected prior to 2008 was reported in the *Schaft Creek Project: 2007 Meteorology Baseline Report* (RTEC 2008) and the *Schaft Creek Project 2006 Meteorology Report* (RTEC 2007).

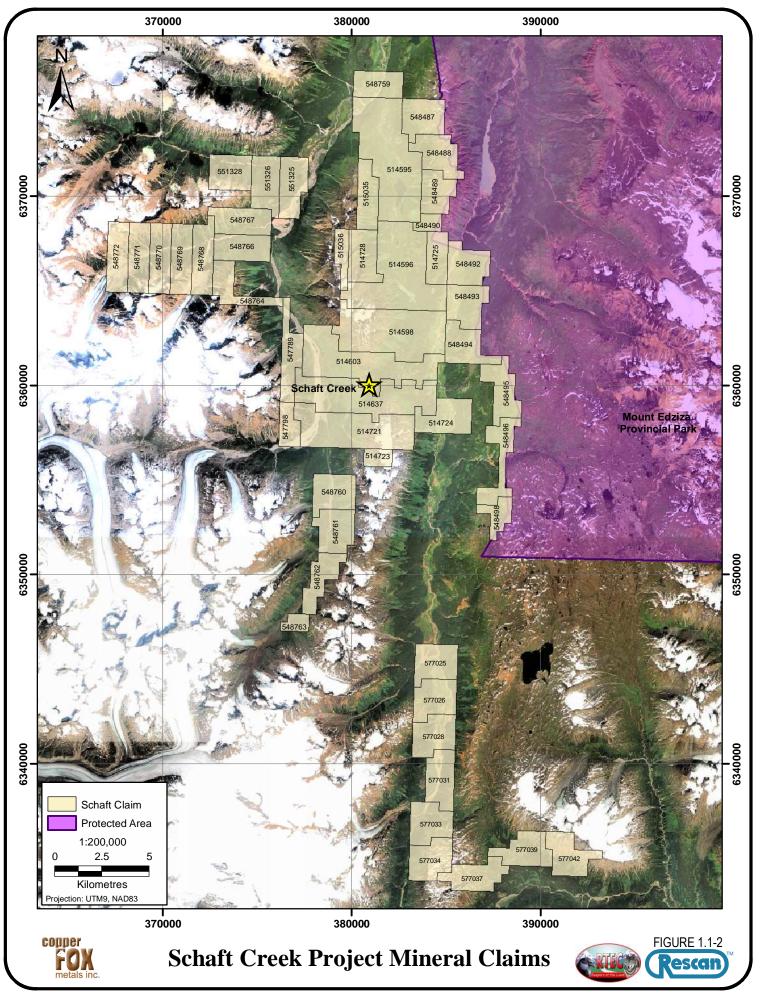
A baseline air quality monitoring study using dustfall collectors took place in the summer and fall of 2007 and 2008. This report presents a description of the methods that were used for the meteorology and air quality baseline program along with results from the 2008 and 2009 field studies.


1.1 PROJECT SUMMARY

Copper Fox is a Canadian mineral exploration and development company focused on developing the Schaft Creek deposit located in northwestern British Columbia, approximately 60 km south of the village of Telegraph Creek (Figure 1.1-1). The Schaft Creek deposit was discovered in 1957 and has since been investigated by prospecting, geological mapping, geophysical surveys as well as diamond and percussion drilling. The deposit is situated within the upper source regions of Schaft Creek, which drains northerly into Mess Creek and onwards into the Stikine River. The Stikine River is an international river that crosses the US/Canadian border near Wrangell, Alaska. The Schaft Creek deposit is a polymetallic (copper-gold-silver-molybdenum) deposit located in the Liard District of northwestern British Columbia (Latitude 57°22′42″; Longitude 130°58′48.9″). The property is comprised of 40 mineral claims covering an area totalling approximately 20,932 ha within the Cassiar Iskut-Stikine Land and Resource Management Plan (Figure 1.1-2).

The Schaft Creek Project is located within the traditional territory of the Tahltan Nation. Copper Fox has been in discussions with the Tahltan Central Council (TCC) and the Tahltan Heritage Resources Environmental Assessment Team (THREAT) since initiating exploration activities in 2005. Copper Fox will continue to work together with the Tahltan Nation as work on the Schaft Creek Project continues.

The Schaft Creek Project entered the British Columbia Environmental Assessment (EA) process in August 2006. Although a formal federal decision has not yet been made, the Project will likely require federal approval as per the *Canadian Environmental Assessment Act*. Copper Fox has targeted the third quarter of 2010 for submission of their Schaft Creek EA Application.

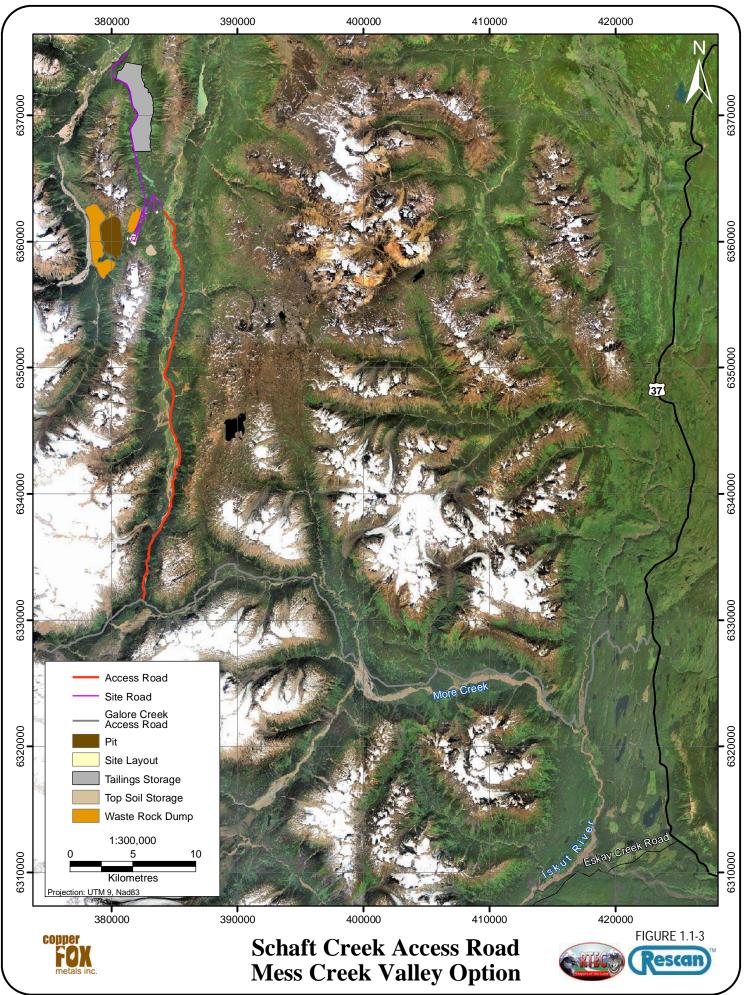

The current mine plan would see ore mined from an open pit at a rate of 100,000 tonnes per day. The mine plan includes 812 million tonnes of Measured and Indicated Mineable resources providing for an estimated 23-year mine life. The Project is estimated to generate up to 2,100 jobs during the construction phase and approximately 700 permanent jobs during mine operations.

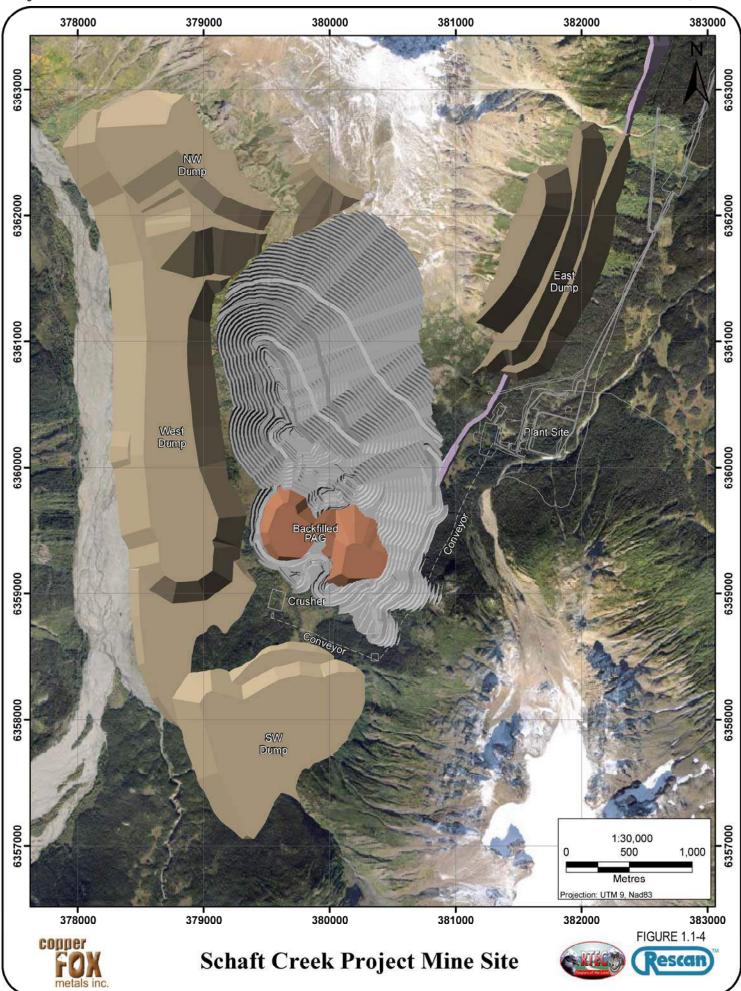
Location Map for Schaft Creek Project

2008 AND 2009 METEOROLOGY AND AIR QUALITY BASELINE

The deposit will be mined with large truck/shovel operations and typical drill and blast techniques. The ore will be crushed, milled, and filtered on site to produce separate copper and molybdenum concentrates. The Process Plant will include a typical comminution circuit (Semi-Autogenous Mill, Ball Mill, and Pebble Crusher) followed by a flotation circuit and a copper circuit with thickener, filtration and concentrate loadout and transportation. The Process Plant includes a designated molybdenum circuit with thickener, filtration, drying and bagging. A tailings thickener and water reclaim system will be used to recycle process water. The circuit will have a design capacity of 108,700 tonnes per day and a nominal capacity of 100,000 tonnes per day (36,000,000 tonnes per year). Approximately 293,000 tonnes of concentrates will be produced each year, which will be transported via truck to the port of Stewart, BC, for onward shipping to markets.

Copper Fox will construct an access road to the mine site (Schaft Creek Access Road; Schaft Road) to the 65.1 km point of the Galore Creek Access Road (Galore Road). The Schaft Road will cover a distance of 39.5 km from the Galore Road to the Schaft mine site (Figure 1.1-3). Both the Galore and Schaft roads will be gravel roads with a six-metre wide driving surface. Pullouts and radio controls will be used to manage two-way traffic on the road. The Schaft Road will be a private road used to service the Schaft Creek mine.


The Galore Road is a fully permitted multi-use road: British Columbia Ministry of Forests and Range Special Use Permit (S24637). Galore Creek Mining Corporation is constructing the Galore Road. Currently, Galore Creek Mining is only planning to construct the Galore Road to 40 km while they review the current Galore Creek Project for which the road was to service. Copper Fox will engage Galore Creek Mining with respect to the completion of the Galore Road, and if necessary, arrange to transfer the permit to Copper Fox as the Schaft Creek Project advances.


The Galore Road connects to Highway 37 near Bob Quinn Lake. The total road distance from the Schaft mine site to Highway 37 is 105 km. The majority of the 39.5 km Schaft Road is within the Mess Creek Watershed. In order to avoid geohazards along the Mess Creek valley, the Schaft Road will cross Mess Creek twice (Figure 1.1-3). Mess Creek is considered navigable per Transportation Canada criteria.

After crossing Mess Creek at the north end of the Schaft Road (32.5 km), the route rises up the side of Mount LaCasse crossing Shift Creek (10 m bridge) and Big B Creek (10 m bridge). The route terminates at Snipe Lake (39.5 km). Conventional 30-tonne trucks will be used to transport concentrate from the mine site to the Bob Quinn area along the Schaft and Galore roads. From Bob Quinn to Stewart, convention B-train commercial truck haulage can then be used along Highway 37 and 37A. There will be 30 concentrate trucks along this route over a 24-hour period, seven days per week.

Electrical power to the mine site will be provided via a 138 kV transmission line, extending from Bob Quinn Lake to the Project along the proposed corridor for the Galore and Schaft roads. The proposed transmission line assumes that electrical power will be supplied from British Columba Transmission Corporation's (BCTC) proposed new 287 kV Northwest Transmission Line from a point near Bob Quinn Lake.

The Schaft Pit will encompass an area of 4.9 km² at the end of the mine life (Figure 1.1-4). The Pit will extend 330 m below the current elevation (520 masl). An ore stockpile and crusher will be located between the Pit and Schaft Creek. Crushed ore will be conveyed to the Plant site on the saddle just east of the Pit. Tailings from the Process Plant will be piped to the Skeeter Tailings Storage Facility (TSF) as slurry (55% solids).

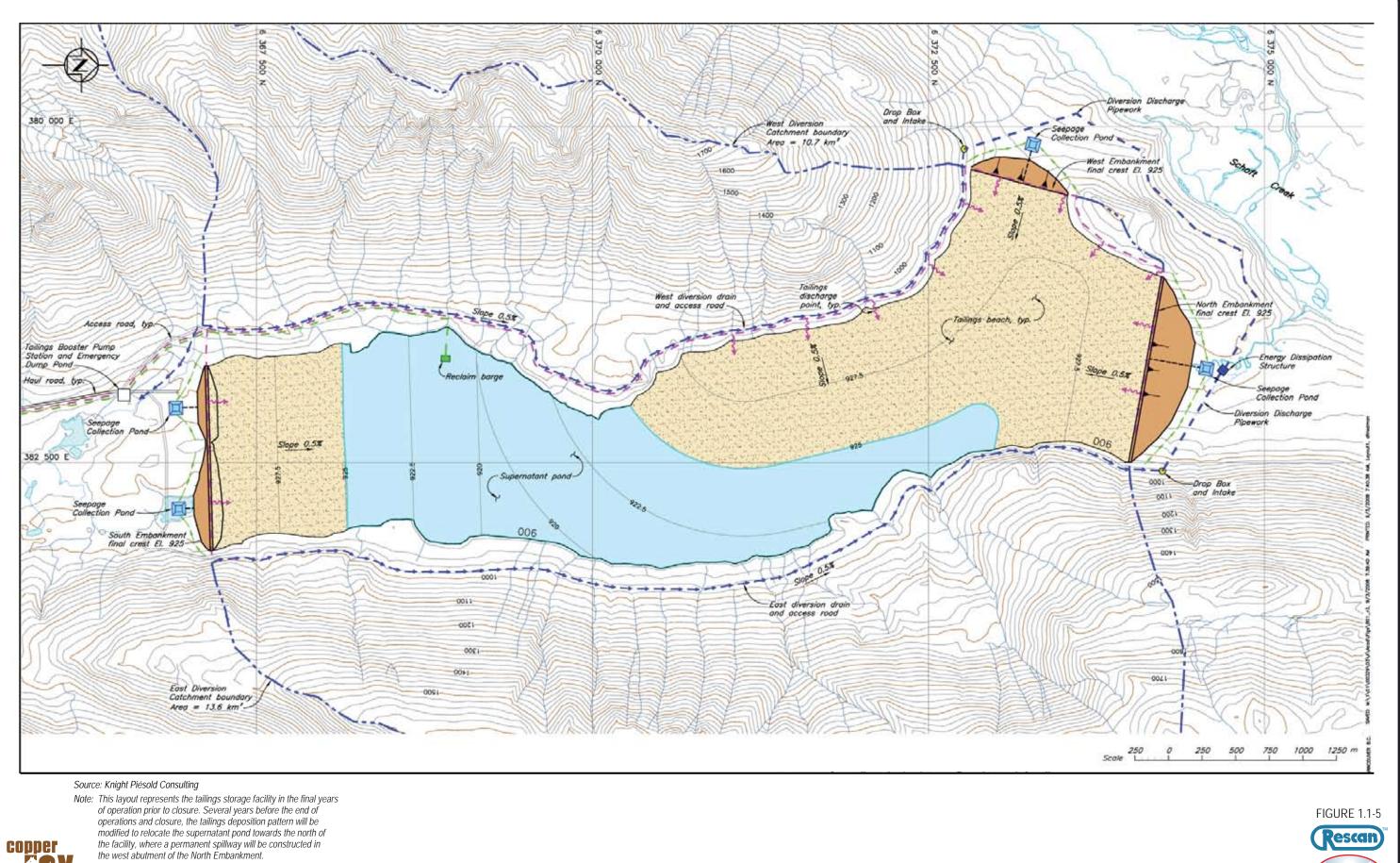
Over the life of the mine, the Project will generate over 812 million tonnes of tailings, which will be managed in the Skeeter TSF. The TSF will not span the low relief watershed divide between Skeeter and Start watersheds. The Skeeter TSF will require three embankments to contain the tailings generated over the life of the mine (Figure 1.1-5). Based on average climatic conditions, the TSF will have a positive water balance. Discharge from the TSF will be to Skeeter Creek.

The Project will generate an estimated 1,547 million tonnes of waste rock. Waste rock dumps are proposed around the perimeter of the Schaft Pit, with the majority of the material being placed on the east side of Schaft Creek (Figure 1.1-4). The current plan assumes the waste rock will be non-acid generating and will not leach metals at or near neutral pH. The plan is subject to change as work progresses on the metal leaching and acid rock drainage program.

The Project will be a fly-in, fly-out operation, and a new airfield capable of handling a Boeing 737 will be constructed to the east of the Pit (Figure 1.1-3). The preliminary design includes a 1,600 m compacted gravel landing strip, terminal building, fuelling facilities, small maintenance facility and control and lighting systems.

A permanent camp will be constructed to support approximately 700 employees. Other facilities include a truck shop, warehouse, administration, maintenance laboratory, explosive storage, water treatment facilities, and potable water storage.

1.2 **OBJECTIVES**


The objective of the meteorological and air quality baseline study was to characterize the meteorological and air quality conditions at the Schaft Creek Project area prior to potential site development. Specific objectives include:

- Collect on-site meteorological station data to determine the 2008 and 2009:
 - precipitation;
 - temperature;
 - relative humidity;
 - wind speed and direction;
 - solar radiation; and
 - snow depth.
- Characterize snow accumulation using manual snow depth measurements (i.e., snow course surveys.
- Compare site specific data to regional meteorological data to evaluate the representativeness of the on-site data.

The objective of the air quality baseline study was to collect air quality baseline information for the purpose of characterizing the air quality conditions at the Schaft Creek Project area. Specific objectives included:

- Characterize particulate, sulphate, nitrate, and metals concentrations.
- Compare site specific data to applicable provincial guidelines and objectives.

This page left blank intentionally.

FOX metals inc.

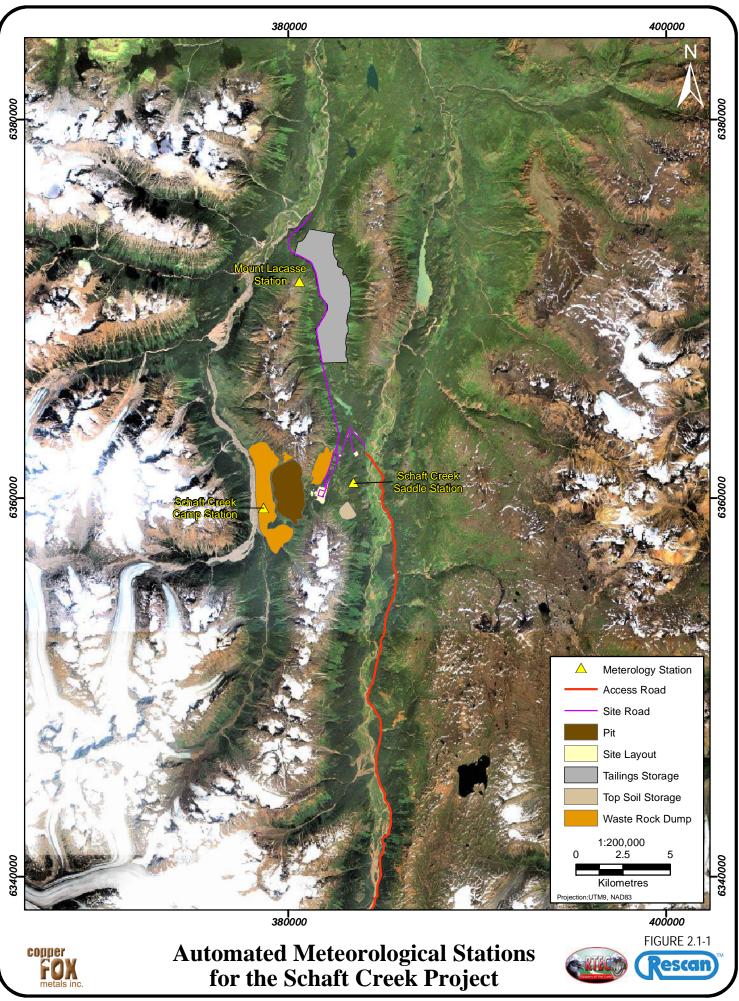
Schaft Creek Project - Skeeter Tailings Storage Facility

2. Methods

2. Methods

Meteorological data were collected using a variety of methods including three automated meteorological stations, two manual snow surveys, and manual instruments.

Regional meteorological data was collected from four Environment Canada – Meteorological Services of Canada (MSC) meteorological stations within a 100 km radius of the Project (Environment Canada, 2002): Unuk River Eskay Creek, Bob Quinn, Iskut Ranch and Todagin Ranch. These stations all have over 10 years of climate data. Unfortunately, the latter three were decommissioned in the early 1990's. The station at Unuk River Eskay Creek has data from 1989 and is the only station that is currently operating.


Eight dustfall monitoring stations were installed during June 2007 and maintained during the 2007 and 2008 summer and fall seasons. Particulate, nitrogen, sulphate, and metal deposition results were analyzed at an off-site accredited laboratory.

2.1 ON-SITE METEOROLOGICAL STATIONS

Three automated meteorological stations has been installed and commissioned for the Schaft Creek Project. The station locations are shown graphically in Figure 2.1-1. The location details are summarized below:

- Schaft Creek Saddle Station: A meteorological station with various sensors supplied by Campbell Scientific Canada Corp. was installed on October 31, 2005 in the topographical "saddle" between Mount LaCasse and Mess Creek (UTM 09, NAD83, 383441 m Easting, 6360853 m Northing, 977 masl elevation). The location was chosen because it is near the proposed camp, mill facilities and airstrip.
- Mount LaCasse Station: A meteorological station with various sensors supplied by Campbell Scientific Canada Corp. was installed on August 10, 2006 near one of the proposed waste rock and tailings management facilities, Option A (UTM 09, NAD83, 380572 m Easting, 6371467 m Northing, 1440 masl elevation).
- Schaft Creek Camp Station: A meteorological station manufactu red by RainWise was installed August 7, 2006 near the proposed pit location (UTM 09, NAD83, 378676 m Easting, 6359490 m Northing, 853 masl elevation).

When selecting an appropriate location for each of the meteorological stations the primary concerns were to avoid obstructions that would bias the wind speeds and directions and to avoid shaded areas that would bias solar radiation data (as well as limit full exposure of the solar power panel to the sunlight). The wind sensors were, where possible, located over open and level terrain, at a horizontal distance of at least ten times the height of any nearby building, tree or other obstruction. The wind sensor at the Mount LaCasse and Schaft Creek Camp stations meet these siting objectives. However, the wind sensor at the Saddle station does not because it is situated in a partially open area surrounded by trees that bias the wind data. No ideal locations were available for this station and the overall best available site was chosen.

Sensors were protected from thermal radiation, and adequately ventilated. Because these stations are located in remote regions and unattended for long periods of time, consideration was also given to accessibility. The stations are powered with 12 volt rechargeable batteries and solar panels.

In order to ensure that the stations collect representative data the sensors were located according to guidelines set by Environment Canada (i.e., Meteorological Services of Canada (MSC) Guidelines for Co-operative Climatological Autostations, MSC 2004) when applicable. Environment Canada has adopted, and wherever possible, follows standards set by the World Meteorological Organization (WMO). The Environment Canada guidelines were established to promote standardization and describe practices, procedures and specifications for proper siting of instruments, precision and accuracy of measurements and archive formats.

2.1.1 Mount LaCasse and Saddle Meteorology Stations

The Mount LaCasse and Saddle stations were constructed using Campbell Scientific Canada Corp. instruments programmed to scan the sensors every 5 seconds and log the following meteorological data:

- o Two minute wind speed, wind direction and standard deviation of wind direction
- Hourly average wind speed, wind direction and standard deviation of wind direction
- Hourly average air temperature
- Hourly average relative humidity
- Total precipitation for the last hour
- Hourly average global solar radiation
- Hourly sample of the snow depth
- Hourly average net radiation

Each day at midnight, the following data were also automatically recorded:

- o Daily maximum and minimum air temperature
- Daily maximum wind speed, wind direction at maximum speed and time
- Total daily precipitation
- Diagnostic information

The sensors were mounted on a 10 m high tower that was rock-anchored at its base and strengthened with guy wires (Plate 2.1-1). Ten metre towers are the standard for collection of wind speed and wind direction data when the data will be used for air dispersion modelling. A certified wind sensor was was used to provide the data quality necessary for future air dispersion modelling. Wind speed is measured in metres per second (m/s) and wind direction in degrees from true north by a RM Young Model 05305 Air Quality wind sensor.

The temperature and relative humidity sensors are combined into one unit (Campbell Scientific Model HMP45C212). The combination sensor is mounted on the tower protected from direct radiation by a multi plate solar radiation shield. Air temperature is measured in degrees Celsius and relative humidity in percent. The solar radiation sensor (a silicon pyranometer) and net radiometer are also mounted on the tower. Solar radiation is measured in units of kilowatts per square meter using a Kipp & Zonen SP LITE sensor. Net radiation is measured in units of watts per square meter using a Kipp & Zonen NR LITE sensor.

Plate 2.1-1. Mount LaCasse Meteorology Station.

GEONOR Model T-200B all-season precipitation gauges are being used to measure rain and snowwater-equivalent (SWE) precipitation at each station. The GEONOR precipitation gauges are mounted on a 2.5 m pedestal to ensure the collection orifice is always above snow level. The GEONOR gauges are surrounded by Alter wind screens to increase the capture efficiency (Plate 2.1-1). Snow depths are monitored with a Campbell Scientific Model SR50 ultrasonic sensor that is mounted to the tower with a cross arm. The snow depth sensor was installed at least 0.5 m above the maximum expected snow depth. Tipping bucket rain gauges (Texas Electronics Model TE525M) were installed at the LaCasse and Saddle meteorological stations in 2006.

The sensors for the auto-station are connected to a Campbell Scientific CR10X datalogger that controls the operation of the station. The datalogger's program monitors the sensors every 5 seconds and generates hourly and daily averages. The hourly and daily averages are stored in a SM4M memory module connected to the CR10X datalogger. During routine maintenance the modules are changed out on a regular basis (i.e,. approximately every two months) and brought back to the office for downloading. The stations are powered with a 50 Watt solar panel and a 12 volt 93 Amp-hour deep cycle marine battery, with the entire station grounded to prevent lightning from damaging the electronics.

2.1.2 Camp Meteorology Station

The Schaft Creek Camp station was constructed using RainWise Inc. gauges programmed to provide the following automatically logged meteorological data in ten minute intervals:

- o Air temperature
- Relative humidity

- Dew temperature
- Wind speed, wind direction and maximum wind direction
- Solar radiation and daily accumulation of solar energy
- Rainfall and snow depth
- Diagnostic information

The sensors are mounted on the RainWise Monopod Sensor Support System. The support system is anchored to 50 gallon drums at its base and stabilized with guy wires (Plate 2.1-2). Wind speed is measured in kilometres per hour (km/h) and wind direction in degrees from true north by a RainWise AerVane wind sensor.

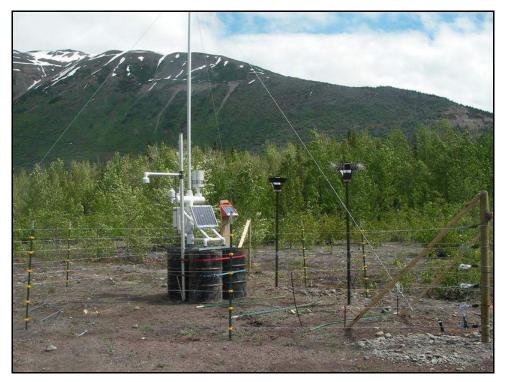


Plate 2.1-2. Schaft Creek Camp Meteorology Station.

The temperature and relative humidity sensors are combined into one unit (RainWise RH/T). The sensor is mounted on the Monopod tower. Air temperature is measured in degrees Celsius and relative humidity in percent. The solar radiation sensor (i.e., silicon pyranometer) is also mounted on the tower. Solar radiation is measured in units of kilowatts per square meter using a RainWise Pyranometer, which features a PIN silicon photo diode.

The RainWise Raingauge is being used to measure rain precipitation at the Schaft Creek Camp station. The precipitation gauge is mounted directly onto the Monopod tower (Plate 2.1-2). Snow depths are monitored with a RainWise ultrasonic sensor that is mounted to the tower. During the winter of 2006 and 2007, the RainWise station lost power repeatedly. It was suspected that the power draw by the ultrasonic snow sensor played a major role in depleting the batteries. Therefore, the snow depth sensor was disconnected in 2007 which relieved the problem and instead, snow depth was measured weekly at the station by Copper Fox staff on site.

The sensors for the auto-station are connected to a RainWise Electronic Datalogger (EDL) that controls the operation of the station. The datalogger is mounted in a weatherproof enclosure. Periodically, a laptop computer is brought to the station and used to download the data directly from the EDL using Weather Log Data Retrieval WL Com version 1.46 software. The RainWise stations are powered by four 6 volt batteries (8 Amp-hour) and a 20 Watt solar panel.

2.1.3 Estimating Annual Precipitation

Mean annual precipitation was estimated in two ways: by applying an orographic enhancement factor to the nearest station with a long-term record and by using ClimateBC PRISM (Parameter-elevation Regression on Independent Slopes Model) data available from Environment Canada.

Normally precipitation is assumed to increase exponentially with change in elevation. This increase is usually given as a percent change in precipitation for a 100 m elevation gain. For northwestern BC the normal rate of increase in precipitation is estimated to be 8% for 100 m increase in elevation. If for a station at elevation h_0 the mean annual precipitation is p_0 , the mean annual precipitation (p_1) at a higher elevation (h_1) can be calculated as

$$p_1 = p_0 (1+x)^{(h_1-h_0)/100}$$

where x is the precipitation gradient (% change for every 100 m change in elevation).

The ClimateBC PRISM data set incorporates climate data from meteorological stations throughout the Pacific and Yukon region and accounts for effects of elevation (PRISM Group, 2001). ClimateBC, climate data interpolation software, was used to extract monthly estimates of precipitation from the PRISM data set (Wang et al., 2006).

ClimateBC uses bi-linear interpolation of the original $4 \times 4 \text{ km}$ grid information provided in the PRISM data and then adjusts temperature estimates using a digital elevation model. Precipitation estimates were obtained for the point-location of the Schaft Creek Camp station.

2.1.4 Maintenance Work Conducted in 2008 and 2009

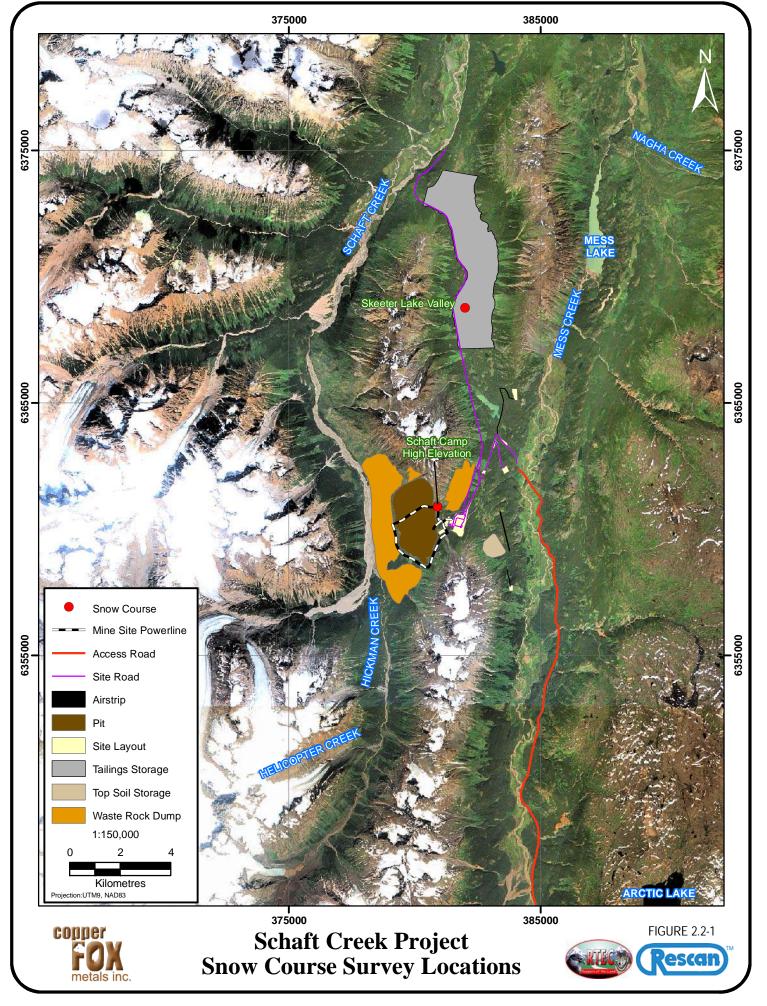
Routine maintenance was conducted on the Schaft Creek LaCasse and Saddle meteorology stations until the beginning of February 2008. The Camp meteorology station was visited routinely throughout the measurement period; however, it malfunctioned several times throughout 2008 and 2009 as a result of manufacturing defects. Although useful data was recorded throughout the two years at all stations, the quality of the data record suffered discontinuities and most sensors did not receive their manufacturer recommended calibration and/or repair.

2.2 SNOW SURVEYS

The baseline meteorology program included manual snow surveys conducted during the winter of 2008. Snow surveys determine the depth and the water content of the snow pack and can be used to estimate the amount of runoff from the mountain watersheds. Two types of traditional manual snow surveys were conducted in the study area: snow probing (to measure snowpack depth) and manual snow course surveys (to measure snowpack depth and snow-water-equivalent). Snow probing was conducted during 2006 and 2007; results and methodologies are presented in *Schaft Creek Project: 2007 Meteorology Baseline Report* (RTEC 2008). Snow probing was not conducted during 2008 or 2009.

Two snow courses were sampled at the beginning of February, April, and May 2008. Snow course SSCW1 is located in the Skeeter Lake Valley at an elevation of 854 masl, and snow course SSCW2 is located north-east of the camp at an elevation of 1436 masl (Figure 2.2-1). The snow courses were installed using procedures in the British Columbia Ministry of Environment Procedure Manual for Snow Surveys (Volume 6, Section 9), December 1982. Standard snow sampling procedures were followed in accordance with the British Columbia Ministry of Environment (Water Management Branch, Surface Water Section) Snow Survey Sampling Guide (document no SS13-81).

The standard snow sampling procedure was implemented at snow courses SSCW1 and SSCW2. Generally, the snow courses consists of 10 snow core samples collected over 300 m situated in small meadows protected from the wind. The snow core sampler consists of a strong, light-weight, graduated aluminum tube and a weighing scale. Snow depth is measured by pushing the tube down through the snowpack to the ground surface and extracting a core. To obtain an accurate snow core sample, the surveyor must verify that the tube has reached ground level by examining the base of the tube and finding mineral soil. After clearing out the soil from the bottom end of the tube, the surveyor determines the amount of water in the snowpack by weighing the tube with its snow core and subtracting the weight of the empty tube. An average of all the ten samples taken is calculated and used to represent the snow course.


Data collected from the snow courses includes snow depth and snow-water-equivalent (SWE) precipitation based on ten samples from each station. This data can be used for the prediction of runoff data for the design of diversion ditches and impoundment water balances. The snow surveys were conducted at the beginning of the month for February to May. The Project's snow course data were compared with data from regional stations monitored by British Columbia Ministry of Environment (BCMOE) at Kinaskan Lake and Wade Lake in the previous baseline reports (RTEC 2007, 2008). In addition, a historical snow survey in the Schaft Creek Project area (4D07 – Schaft Creek) was monitored by the BCMOE during February 1982 to 1983 and April 1980 to 1990. Based on two years of data the mean snow depth, SWE, and snow density during February were 118 cm, 262 cm, and 22%, respectively. Results indicate that during the 10 years of record the mean snow depth, SWE, and snow density during April were 141 cm, 463 mm, and 32%, respectively. Because these data are limited it is not possible to predict snowpack trends for all winter months. However, these data indicate that snow depth, SWE, and snow density increase from February to April.

2.3 MANUALLY COLLECTED DATA

Measurements of morning (7:30 am) and afternoon (3:30 pm) temperatures and snow depth in Schaft Creek Camp, and snow depth at the Schaft Creek Camp meteorology station were logged daily by Copper Fox staff (Mr. Kenneth Cottrell). Temperatures were measured using a thermometer and snow depth was measured using staff gauges mounted on vertical supports made by two-by-fours. Cloud cover and wind speed were estimated. Measurements were taken from January 1 to 31, 2008 and October 5, 2008 to August 31, 2009. Manually logged data are summarized in Appendix 2.

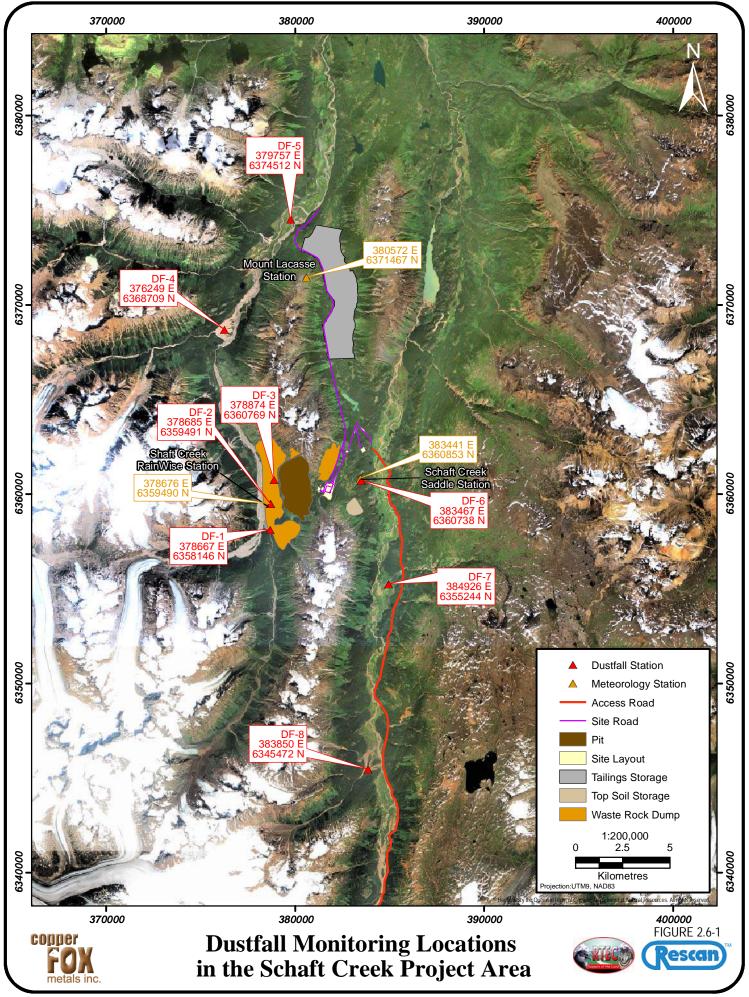
2.4 HISTORICAL ON-SITE METEOROLOGICAL DATA

As part of the preliminary feasibility studies that were undertaken by Copper Fox Metals, some historical weather data was collected at the Schaft Creek Project site. These records are brief and not continuous, but they do provide valuable on-site meteorological data. Data collected includes: daily maximum and minimum temperatures, precipitation, snow and snow on ground.

A weather station was established at the Schaft Creek site in the summer of 1969. The weather station equipment was provided by the Victoria Regional Climate Data Centre of the Department of Transport Canada. The historical Schaft Creek weather station was equipped with one Stevenson screen and stand, one rain gauge, one rainfall graduate, two minimum thermometers, two maximum thermometers, and one snow ruler. The period of record encompassed June to September 1969, and March 1970 to February 1972.

2.5 REGIONAL METEOROLOGICAL DATA

Regional meteorological data from four MSC stations (Environment Canada, 2002; Unuk River Eskay Creek, Bob Quinn, Iskut Ranch and Todagin Ranch) within a 100 km radius was used to further characterize climatic conditions on-site. All of these stations have more than 10 years of data; unfortunately, the latter three were decommissioned in the early 1990's. Bob Quinn has since been recommissioned; however, data was not available past 1994. Unuk River Eskay Creek is the only regional MSC station that continues to operate.


2.6 DUSTFALL DATA

Eight dustfall monitoring stations were installed during June 2008 at the locations shown in Figure 2.6-1. Each dustfall monitoring station consists of two canisters placed within a black wind screen (Plate 2.6-1) mounted on a 2 m pole. Bird spikes were attached to the top of the wind screen to prevent contamination of the samples from bird feces. The canisters were charged with de-ionized water upon installation to avoid re-suspending dust after it deposits in the collectors. De-ionized water was added as necessary to prevent the canisters from drying out during the monitoring period. The two canisters collect the same data, but were analysed differently in the lab – the first for total particulate, soluble particulate, insoluble particulate, sulphate, and nitrate (anions) and the second for total metals. ALS Environmental Services in Vancouver analysed the dustfall samples.

The canisters were left open to the atmosphere for approximately 30 days (+/- 2 days), before being switched out, and submitted to the lab for analysis. Dustfall was monitored from July to October 2007 and June to November 2008. Each site required a monthly visit to exchange canisters and ensure the site has not been tampered with. The full dustfall methodology is contained in ASTM D 1739 – 98 (Reapproved 2004) Standard Test Method for Collection and Measurement of Dustfall (Settleable Particulate Matter).

Plate 2.6-1. Baseline dustfall monitoring station FD3, including two individual dustfall canisters (white) surrounded by a wind screen (black) and bird spikes (metal). Two containers are needed to collect a sufficient volume of sample for the list of parameters.

3. Results

3. Results

Baseline meteorology data collected in 2008 and 2009 for air temperature, precipitation, wind speed and direction, solar radiation and snow depth measured at the on-site meteorological stations are presented below. Where possible, current baseline data were compared to historical records from the initial baseline work completed between 1969 and 1972. Current data was also compared to regional data from meteorological stations operated by Environment Canada – Meteorological Service of Canada (MSC).

On-site baseline air quality data collected in 2007 and 2008 for particulates, nitrate, sulphate, and metal concentrations are also presented below. Where possible, these baseline air quality data are compared to provincial guidelines and objectives.

3.1 CLIMATIC SETTING

The Schaft Creek Project is located on the eastern edge of the Boundary Ranges in the Coast Mountains. This is a high, rugged mountain range in north central British Columbia with the coastal mountains to the west and sub-boreal interior plateau to the east. The climate of the Project area is characterized by this coast/interior transition. The Coast Mountains with peaks over 3,000 m in elevation lead to lifting of moist air masses moving inland from the Pacific Ocean. Annual precipitation in the Coast Mountains is often above 3,000 mm, while temperatures are mild due to the proximity of the Pacific. The climate of the interior sub-boreal plateau, on the other hand, is continental with annual precipitations between 400 and 800 mm with very warm short summers and long cold winters.

Meteorological data collected at the Schaft Creek Saddle station is summarized in Tablex 3.1-1a (2008) and 3.1-1b (2009). Data from the Mount LaCasse station is summarized in Tables 3.1-2a (2008) and 3.1-2b (2009), and data from the Schaft Creek Camp station is summarized in Tables 3.1-3a (2008) and 3.1-3b (2009). Table 3.1-4 lists the mean monthly data available for the historical meteorological station at the Schaft Creek site. Monthly averages for four MSC stations within 100 km of the Project area are listed in Tables 3.1-5 to 3.1-8.

3.2 AIR TEMPERATURE

At the Saddle meteorological station, the monthly average air temperatures ranged from -13.3°C in December 2008 to 11.1°C in August 2008, and -8.9°C in February 2009 to 15.7°C in July 2009 (Table 3.1-1 and Figure 3.2-1). The extreme minimum temperature was -32.4°C in 2008 and -30.4°C in 2009 (January to September). In both instances, the extreme minimum occurred in January. The extreme maximum temperature was 25.7°C in 2008 and 31.4°C in 2009. In both instances, the extreme minimum occurred in July. The annual average air temperature was 0.5°C in 2008. The annual average air temperature for 2009 was not available because 3 months were missing from the dataset.

At the Mount LaCasse meteorological station, monthly average air temperatures ranged from -13.4°C in December 2008 to 8.3°C in August 2008, and -9.6°C in February 2009 to 12.9°C in July 2009 (Table 3.1-1 and Figure 3.2-1). The extreme minimum temperature was -34.1°C in 2008 and -31.9°C in 2009 (January to September). The extreme minimum occurred in February in 2008 and January in 2009. The extreme maximum temperature was 21.5°C in 2008 and 26.9°C in 2009. In both instances, the extreme minimum occurred in July. The annual average air temperature was -1.9°C in 2008. The annual average temperature for 2009 was not available because 3 months were missing from the dataset.

Table 3.1-1a. 2008 Summary of Meteorological Data from the Saddle Meteorological Station

		Mean Daily	Mean Daily	Extreme	Extreme	Average		Maximum	Time of	Total	Total			
	Average	Minimum	Maximum	Minimum	Maximum	Relative	Average	Instantaneous	Maximum Hourly	Precipitation	Precipitation	Average Solar	Average Net	Average Snow
Date	Temperature	Temperature	Temperature	Temperature	Temperature	Humidity	Windspeed ¹	Windspeed ¹	Windspeed ¹	(TBRG) ²	(GEONOR) ²	Radiation	Radiation	Depth
	(°C)	(°C)	(°C)	(°C)	(°C)	(%)	(m/s)	(m/s)	(hour-minute)	(mm)	(mm)	(W/m ²)	(W/m ²)	(m)
Jan-08	-9.7	-12.7	-6.7	-32.4	3.9	82.9	n/a	n/a	n/a	4	28	14	-10.8	1.10
Feb-08	-7.8	-11.0	-4.2	-31.4	7.7	78.1	1.7	14.1	2320	35	36	37	-5.0	1.29
Mar-08	-3.4	-6.8	0.6	-12.1	5.9	72.0	1.7	13.8	1153	2	27	105	15.5	1.45
Apr-08	-1.0	-5.0	3.9	-12.2	9.2	60.5	1.8	15.0	1659	26	33	177	58.1	1.32
May-08	6.6	2.3	11.5	-2.4	20.6	59.1	1.9	14.2	1301	n/a	41	231	122.7	0.59
Jun-08	7.9	3.8	12.8	-1.4	19.6	57.2	1.7	11.5	638	n/a	13	249	148.6	0.00
Jul-08	10.3	6.6	15.1	3.3	25.7	62.1	2.3	13.2	1259	n/a	19	211	119.2	0.00
Aug-08	11.1	7.6	15.5	1.8	25.7	69.3	1.8	11.6	1301	n/a	93	158	76.4	0.00
Sep-08	7.8	4.6	12.0	-1.2	19.7	67.0	2.5	14.2	1301	n/a	21	110	38.4	0.00
Oct-08	0.7	-1.4	3.2	-7.6	16.2	79.8	3.0	17.2	1723	n/a	n/a	48	2.2	0.29
Nov-08	-3.5	-5.7	-1.0	-13.7	3.8	88.1	1.6	17.9	21	n/a	n/a	15	-11.6	0.85
Dec-08	-13.3	-16.5	-9.4	-27.1	2.9	81.6	n/a	n/a	n/a	n/a	n/a	11	-14.3	1.36
Annual Average	0.5	-2.8	4.4	-	-	71.5	n/a	n/a	-	n/a	n/a	114	45.0	-
Minimum	-13.3	-16.5	-9.4	-32.4	-	57.2	1.6	11.5	-	n/a	n/a	11	-14.3	0.00
Maximum	11.1	7.6	15.5	-	25.7	88.1	3.0	17.9	-	n/a	n/a	249	148.6	1.45
Annual Sum	-	-	-	-	-	-	-	-	-	n/a	n/a	-	-	-

Note:

n/a = not available.

¹ The wind sensor froze from January 1 to February 6, 2008, November 8 to 12 and 16 to 20, 2008 and December 1 to 31, 2008. Data should be used with caution as it is not clear when during the period from February 2008 to October 2009 the wind sensor at Saddle station was damaged. It is also not clear the extent to which that damage may have affected the quality of data recorded.

² Maintenance was not conducted on the tipping bucket rain gauge (TBRG) or GEONOR precipitation gauges for the majority of the measurement period and therefore, This data should be considered with a high degree of caution.

Table 3.1-1b. 2009 Summary of Meteorological Data from the Saddle Meteorological Station

		Mean Daily	Mean Daily	Extreme	Extreme	Average		Maximum	Time of	Total	Total			
	Average	Minimum	Maximum	Minimum	Maximum	Relative	Average	Instantaneous	Maximum Hourly	Precipitation	Precipitation	Average Solar	Average Net	Average Snow
Date	Temperature	Temperature	Temperature	Temperature	Temperature	Humidity	Windspeed ¹	Windspeed ¹	Windspeed ¹	(TBRG) ²	(GEONOR) ²	Radiation	Radiation	Depth
	(°C)	(°C)	(°C)	(°C)	(°C)	(%)	(m/s)	(m/s)	(hour-minute)	(mm)	(mm)	(W/m ²)	(W/m ²)	(m)
Jan-09	-8.3	-12.1	-4.1	-30.4	11.5	72.8	2.5	17.0	2103	n/a	n/a	17	-17.2	1.51
Feb-09	-8.9	-12.1	-5.3	-22.1	-0.1	79.2	1.5	15.4	1753	n/a	n/a	60	-13.9	2.06
Mar-09	-6.9	-10.5	-2.5	-23.1	3.1	74.3	1.7	16.0	1351	n/a	n/a	97	8.7	2.08
Apr-09	0.7	-3.2	5.7	-11.5	15.9	59.7	1.4	15.4	1753	n/a	n/a	187	55.8	1.92
May-09	5.4	0.9	10.5	-3.0	17.7	55.0	1.4	12.0	1642	n/a	n/a	240	117.2	1.10
Jun-09	11.1	6.7	15.8	2.7	25.5	52.5	2.0	12.0	1642	n/a	n/a	247	145.0	0.00
Jul-09	15.7	10.6	21.5	4.9	31.4	52.1	1.4	11.0	155	n/a	n/a	232	133.0	0.00
Aug-09	12.1	8.6	16.7	4.5	26.3	62.3	1.8	12.9	1304	n/a	n/a	160	76.5	0.00
Sep-09	7.1	4.3	10.5	-1.3	19.7	75.7	1.9	15.8	2216	n/a	78	88	27.3	0.00
Oct-09	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Nov-09	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Dec-09	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Annual Average	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Minimum	-8.9	-12.1	-5.3	-30.4	-	52.1	1.4	11.0	-	n/a	n/a	17	-17.2	0.0
Maximum	15.7	10.6	21.5	-	31.4	79.2	2.5	17.0	-	n/a	n/a	247	145.0	2.1
Annual Sum	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Note:

n/a = not available.

¹ Data should be viewed with caution as it is not clear when during the period from February 2008 to October 2009 the wind sensor at Saddle station was damaged. It is also not clear the extent to which that damage may have affected the quality of data recorded.

² Maintenance was not conducted on the tipping bucket rain gauge (TBRG) or GEONOR precipitation gauges for the majority of the measurement period and therefore, data should be considered with a high degree of caution.

Table 3.1-2a. 2008 Summary of Meteorological Data from the Mount LaCasse Meteorological Station

		Mean Daily	Mean Daily	Extreme	Extreme	Average		Maximum	Time of	Total	Total			
	Average	Minimum	Maximum	Minimum	Maximum	Relative	Average	Instantaneous	Maximum Hourly	Precipitation	Precipitation	Average Solar	Average Net	Average Snow
Date	Temperature	Temperature	Temperature	Temperature	Temperature	Humidity	Windspeed	Windspeed	Windspeed	(TBRG) ¹	(GEONOR) ¹	Radiation	Radiation	Depth
	(°C)	(°C)	(°C)	(°C)	(°C)	(%)	(m/s)	(m/s)	(hour-minute)	(mm)	(mm)	(W/m ²)	(W/m ²)	(m)
Jan-08	-10.9	-13.6	-7.9	-33.3	5.2	81.4	4.9	21.9	747	3	17	19	-15.7	0.88
Feb-08	-9.5	-12.5	-6.4	-34.1	2.7	82.7	5.4	18.3	932	8	31	48	-14.8	1.06
Mar-08	-6.2	-9.1	-2.6	-15.3	4.7	76.9	4.9	20.2	830	27	17	117	-14.5	1.15
Apr-08	-4.5	-8.0	-0.1	-15.8	4.4	69.6	5.6	22.4	1715	20	16	195	-0.8	1.21
May-08	3.6	0.2	8.0	-4.9	16.6	66.1	4.6	19.9	1105	34	226	253	42.8	0.89
Jun-08	4.7	1.2	9.1	-2.3	14.9	67.3	4.4	17.2	1034	38	248	249	98.7	0.00
Jul-08	7.3	3.9	11.6	1.1	21.5	72.0	4.6	18.6	1116	42	12	211	86.7	0.00
Aug-08	8.3	5.6	11.6	1.3	21.2	76.2	4.1	19.6	1646	83	61	160	52.0	0.00
Sep-08	4.8	2.5	8.0	-1.9	13.5	76.0	4.2	18.0	2225	50	16	108	19.3	n/a
Oct-08	-2.2	-4.4	0.0	-11.0	11.9	88.5	5.8	22.7	15	42	33	50	-11.3	n/a
Nov-08	-5.3	-7.0	-3.2	-12.8	0.9	87.8	5.3	22.0	2357	16	67	22	-16.1	n/a
Dec-08	-13.4	-16.2	-9.9	-28.6	-0.2	74.6	4.6	19.6	1646	0	18	14	-21.1	n/a
Annual Average	-1.9	-4.8	1.5	-	-	76.6	4.9	20.0	-	n/a	n/a	120	17.1	-
Minimum	-13.4	-16.2	-9.9	-34.1	-	66.1	4.1	17.2	-	n/a	n/a	14	-21.1	0.0
Maximum	8.3	5.6	11.6	-	21.5	88.5	5.8	22.7	-	n/a	n/a	253	98.7	1.2
Annual Sum	-	-	-	-	-	-	-	-	-	n/a	n/a	-	-	-

Note:

n/a = not available

¹ Maintenance was not conducted on the tipping bucket rain gauge (TBRG) or GEONOR precipitation gauges for the majority of the measurement period and therefore, data should be considered with a high degree of caution.

Table 3.1-2b. 2009 Summary of Meteorological Data from the Mount LaCasse Meteorological Station

		Mean Daily	Mean Daily	Extreme	Extreme	Average		Maximum	Time of	Total	Total			
	Average	Minimum	Maximum	Minimum	Maximum	Relative	Average	Instantaneous	Maximum Hourly	Precipitation	Precipitation	Average Solar	Average Net	Average Snow
Date	Temperature	Temperature	Temperature	Temperature	Temperature	Humidity	Windspeed	Windspeed	Windspeed	(TBRG) ¹	(GEONOR) ¹	Radiation	Radiation	Depth
	(°C)	(°C)	(°C)	(°C)	(°C)	(%)	(m/s)	(m/s)	(hour-minute)	(mm)	(mm)	(W/m ²)	(W/m ²)	(m)
Jan-09	-9.1	-12.4	-5.8	-31.9	8.4	73.6	5.5	26.3	2322	0	39	20	-22.8	n/a
Feb-09	-9.6	-12.7	-5.8	-21.3	0.1	72.7	4.1	17.1	2102	0	20	62	-29.8	n/a
Mar-09	-9.5	-12.7	-5.7	-24.2	-1.1	78.2	4.7	20.1	525	0	22	110	-12.8	n/a
Apr-09	-2.7	-6.0	1.5	-13.5	9.2	67.5	4.4	17.9	142	0	6	211	0.3	n/a
May-09	2.3	-1.3	6.9	-6.4	12.3	62.9	3.5	15.9	1832	9	13	275	36.7	n/a
Jun-09	8.2	4.7	12.3	-0.1	21.1	59.8	3.8	15.7	1149	19	3	277	93.0	n/a
Jul-09	12.9	9.0	17.6	3.0	26.9	58.9	3.5	16.4	1608	23	4	261	105.6	n/a
Aug-09	9.0	6.1	12.8	1.9	21.6	71.5	4.2	18.7	2010	52	5	166	54.3	n/a
Sep-09	4.3	2.1	7.1	-3.6	15.2	82.5	5.4	21.6	1306	140	0	91	16.3	n/a
Oct-09	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Nov-09	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Dec-09	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Annual Average	n/a	n/a	n/a	-	-	n/a	n/a	n/a	-	n/a	n/a	n/a	n/a	-
Minimum	-9.6	-12.7	-5.8	-31.9	-	58.9	3.5	15.7	-	n/a	n/a	20	-29.8	-
Maximum	12.9	9.0	17.6	-	26.9	82.5	5.5	26.3	-	n/a	n/a	277	105.6	-
Annual Sum	-	-	-	-	-	-	-	-	-	n/a	n/a	-	-	-

Note:

n/a = not available

¹ Maintenance was not conducted on the tipping bucket or GEONOR rain gauges for the majority of the measurement period and therefore, data should be considered with a high degree of caution.

	Table 3.1-3a. Monthl	v Meteorologica	al Conditions at Camı	o Meteorological Station
--	----------------------	-----------------	-----------------------	--------------------------

				Extreme	Average		Maximum	Date of Maximum			
	Days of	Average	Extreme Minimum	Maximum	Relative	Average	Instantaneous	Instantaneous		Average Solar	Average Snow
Date	Record	Temperature	Temperature	Temperature	Humidity	Windspeed ¹	Windspeed ¹	Windspeed ¹	Total Rainfall	Radiation	Depth
		(°C)	(°C)	(°C)	(%)	(m/s)	(m/s)		(mm)	(W/m ²)	(mm)
Jan-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Feb-08	13	-3.8	-18.2	7.8	80.1	1.1	10.9	02/27/08	10	45	0.0
Mar-08	31	-5.0	-22.3	5.3	76.5	1.5	15.5	03/16/08	25	78	0.0
Apr-08	22	-2.5	-17.0	6.9	65.7	2.2	17.0	04/16/08	21	121	0.0
May-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Jun-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Jul-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Aug-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Sep-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Oct-08	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Nov-08	19	-6.4	-24.4	2.8	90.9	3.3	14.9	11/25/08	7	11	0.0
Dec-08	13	-25.0	-39.7	-7.6	100.0	1.1	5.8	12/27/08	0	10	958.1
Annual Average	-	-	-	-	-	-	-	-	-	n/a	n/a
Minimum	-	-25.0	-39.7	-	65.7	1.1	5.8	-	0	n/a	n/a
Maximum	-	-2.5	-	7.8	100.0	3.3	17.0	-	25	n/a	n/a
Annual Sum	98	-	-	-	-	-	-	-	-	n/a	n/a

Note:

n/a = not available February, March, November and December were all incomplete data sets.

¹ The wind direction sensor malfunctioned and it is not clear if the wind speed sensor also malfunctioned due to a lack of routine maintenance.

Table 3.1-3b. Monthly Meteorological Conditions at Camp Meteorological Statio	Table 3.1-3b. Monthl	v Meteorologica	al Conditions at Cam	p Meteorological Station
---	----------------------	-----------------	----------------------	--------------------------

				Extreme	Average		Maximum	Date of Maximum			
	Days of	Average	Extreme Minimum	Maximum	Relative	Average	Instantaneous	Instantaneous		Average Solar	Average Snow
Date	Record	Temperature	Temperature	Temperature	Humidity	Windspeed ¹	Windspeed ¹	Windspeed ¹	Total Rainfall	Radiation	Depth
		(°C)	(°C)	(°C)	(%)	(km/h)	(km/h)		(mm)	(W/m ²)	(mm)
Jan-09	1	-37.3	-40.0	-29.0	100	n/a	n/a	n/a	0	9	722
Feb-09	13	-16.1	-33.9	-0.8	94	0.6	9.6	2/22/2009	1	53	1085
Mar-09	31	-9.4	-34.3	8.3	84	1.3	24.3	3/12/2009	4	72	1162
Apr-09	30	-1.1	-21.9	17.6	70	1.5	20.2	4/24/2009	6	137	998
May-09	31	4.5	-8.6	18.8	63	1.9	21.5	5/30/2009	21	158	340
Jun-09	30	11.2	-2.9	29.5	57	2.0	15.4	6/25/2009	11	165	0
Jul-09	31	15.1	0.7	35.1	59	1.6	15.4	7/18/2009	5	150	0
Aug-09	24	12.0	-0.4	27.1	67	1.9	17.4	8/15/2009	16	104	0
Sep-09	15	8.4	-2.5	21.3	81	1.2	15.8	9/7/2009	40	78	0
Oct-09	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Nov-09	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Dec-09	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Annual Average	-	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Minimum	-	-37.3	-40.0	-	57	0.6	9.6	-	0	n/a	n/a
Maximum	-	15.1	-	35.1	100	2.0	24.3	-	40	n/a	n/a
Annual Sum	206	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

n/a = not available

January, February, August and September were not complete data sets.

¹ The wind direction sensor malfunctioned and it is not clear if the wind speed sensor also malfunctioned due to a lack of routine maintenance.

	Mean Maximum Air	Mean Minimum Air			Mean Maximum Air	Mean Minimum Air	
	Temperature	Temperature	Total Precipitation		Temperature	Temperature	Total Precipitation
	(°C)	(°C)	(mm)		(°C)	(°C)	(mm)
Jun* 1969	19.4	7.8	17	Jan-71	-14.7	-22.9	47
Jul	15.0	7.2	17	Feb*	0.6	-10.8	15
Aug	13.3	4.4	59	Mar	2.2	-12.2	129
Sep*	11.1	3.3	40	Apr	8.8	-7.9	45
Mar* 1970	4.4	-4.2	0	May	12.3	-2.0	12
Apr	5.4	-5.7	61	Jun	17.8	4.3	17
May	7.3	-0.2	19	Jul	20.7	7.2	28
Jun	11.1	3.1	56	Aug	17.4	6.7	56
Jul	11.4	5.3	21	Sep	11.6	2.8	43
Aug	15.3	5.1	54	Oct	4.1	-3.4	143
Sep	11.5	1.1	71	Nov	-1.9	-10.1	149
Oct	6.1	-2.9	124	Dec	-11.2	-20.2	51
Nov	-4.6	-13.8	50	Jan-72	-13.8	-23.3	38
Dec	-10.6	-18.4	92	Feb	-9.8	-18.8	74

Table 3.1-4. Average Monthly Data from the Historical Schaft Creek Camp Meteorological Station

* Not a complete month

Table 3.1-5. Average Monthly Data from the Bob Quinn Meteorological Station (1977 to 1994)

	Mean Max Temp	Mean Temp	Mean Min Temp	Total Rain	Total Snow	Total Precip	Snow Depth Last Day
Month	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)
January	-5.2	-8.5	-11.7	19	41	60	46
February	-2.1	-6.4	-10.7	13	28	41	43
March	4.7	-0.3	-5.3	14	14	27	25
April	9.9	3.9	-2.2	18	7	25	1
May	14.8	8.2	1.5	28	1	29	0
June	18.5	11.9	5.3	34	0	34	0
July	20.4	14.1	7.8	57	0	57	0
August	19.7	13.4	7.1	50	0	50	0
September	14.4	9.3	4.2	86	0	86	0
October	7.5	4	0.4	94	8	102	1
November	-0.9	-3.7	-6.4	34	28	62	10
December	-5.3	-8.3	-11.3	18	53	71	34
Average	8.0	3.1	-1.8	n/a	n/a	n/a	n/a
Total	n/a	n/a	n/a	464	179	644	n/a

Note: n/a: this total or average is not required for this parameter

Table 3.1-6. Average Monthly Data from the Iskut Ranch Meteorological Station (1976 to 1994)

	Mean Max Temp	Mean Temp	Mean Min Temp	Total Rain	Total Snow	Total Precip	Snow Depth Last Day
Month	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)
January	-6.2	-11.4	-16.6	7	29	37	41
February	-2.8	-8.7	-14.5	6	13	19	26
March	2.6	-3.4	-9.3	2	13	15	12
April	7.7	1.3	-5.1	2	4	6	0
May	13.2	6.3	-0.7	24	2	26	0
June	17.3	10.1	2.9	44	0	44	0
July	19.1	12.1	5.1	66	0	66	0
August	18.3	11.3	4.3	58	0	58	0
September	13.1	7.2	1.2	50	1	50	0
October	6.3	2	-2.4	35	6	41	1
November	-1.3	-6.1	-10.8	8	20	28	13
December	-6.5	-11.7	-16.8	4	37	41	26
Average	6.7	0.8	-5.2	n/a	n/a	n/a	n/a
Total	n/a	n/a	n/a	306	125	431	n/a

Note: n/a: this total or average is not required for this parameter.

Table 3.1-7. Average Monthly Data from the Todagin Ranch Meteorological Station (1976 to 1992)

	Mean Max Temp	Mean Temp	Mean Min Temp	Total Rain	Total Snow	Total Precip	Snow Depth Last Day
Month	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)
January	-8	-13.3	-18.6	1	31	32	56
February	-3.4	-9.9	-16.3	1	16	17	56
March	2	-4.9	-11.8	1	16	17	51
April	7.3	0.5	-6.2	3	8	11	4
May	12.6	5.4	-1.8	21	3	24	0
June	17	9.4	1.7	37	0	37	0
July	18.8	11.6	4.3	54	0	54	0
August	18.3	11.1	3.8	49	0	49	0
September	13	6.9	0.7	53	1	54	0
October	5.6	1.2	-3.2	33	15	47	4
November	-3.6	-8.4	-13.2	5	31	35	25
December	-7.9	-12.8	-17.6	1	42	43	46
Average	6	-0.3	-6.5	n/a	n/a	n/a	n/a
Total	n/a	n/a	n/a	258	161	419	n/a

Note: n/a: this total or average is not required for this parameter.

Table 3.1-8. Average Monthly Data from the Unuk River Eskay Creek Meteorological Station (1989 to 2009)

	Mean Max Temp	Mean Temp	Mean Min Temp	Total	Total	Total
	(°C)	(°C)	(°C)	Rain	Snow	Precipitation
Month				(mm)	(cm)	(mm)
January	-8.3	-5.4	-11.0	7	237	245
February	-5.9	-2.6	-9.2	5	206	212
March	-4.1	-0.5	-7.7	2	163	169
April	0.5	4.6	-3.7	19	74	93
May	4.1	8.6	-0.2	72	20	93
June	8.1	13.2	3.2	68	0	68
July	10.4	14.9	5.9	82	0	82
August	10.4	14.9	6.0	142	0	142
September	5.8	9.1	2.7	217	7	224
October	0.7	3.3	-1.9	144	99	243
November	-4.9	-2.4	-7.4	19	199	218
December	-6.7	-4.0	-9.4	1	259	260
Average	4.5	0.9	-2.7	n/a	n/a	n/a
Total	n/a	n/a	n/a	780	1,264	2,047

Note: n/a: this total or average is not required for this parameter.

May to December 2009 data were not available.

2008 AND 2009 METEOROLOGY AND AIR QUALITY BASELINE

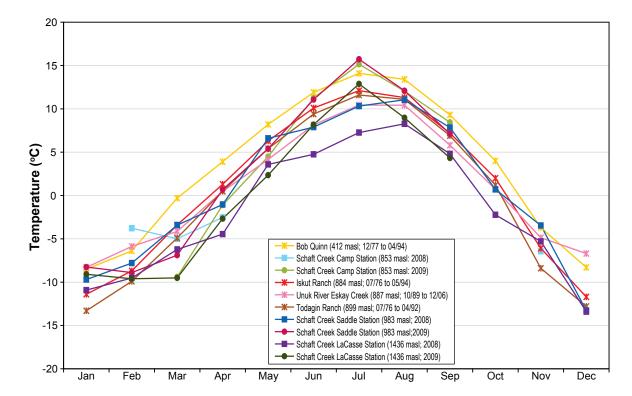
Due to lack of maintenance the Schaft Creek Camp meteorological station did not report a continuous data set and therefore, it was not possible to generate monthly average and annual air temperatures. The data that was collected is, however, presented in Table 3.1-1 and Figure 3.2-1. The extreme minimum temperature was -39.7°C in 2008 and -40.0°C in 2009 (January to September). The extreme minimum occurred in December in 2008 and January in 2009. The extreme maximum temperature was 35.1°C in 2009 and this occurred in July. Summer air temperature was not recorded at the Camp meteorological station during 2008and therefore no extreme maximum value is available.

The monthly averages of 2008 and 2009 at the stations follow similar seasonal trends as the four MSC weather stations at Unuk River Eskay Creek, Bob Quinn, Iskut Ranch and Todagin Ranch (Figure 3.2-1). It is not possible to compare the on-site station data to 2008 and 2009 regional data. Unfortunately, Bob Quinn, Iskut Ranch and Todagin Ranch stations are no longer in operation. Some data for 2008 and 2009 from Unuk River Eskay Creek was available at the time of writing. Bob Quinn station has higher air temperatures than the other stations due to its lower elevation. In the same respect, Creek Mount LaCasse station was the coldest.

In general, at the three Schaft Creek meteorology stations the summer of 2009 was warmer than the summer of 2008. Figure 3.2-2 shows that on-site monthly air temperatures measured in 2008 and 2009 tended to remain within the historical minimum and maximum values, with the exception of January which was warmer in 2008 and 2009 than the historical records.

3.3 **PRECIPITATION**

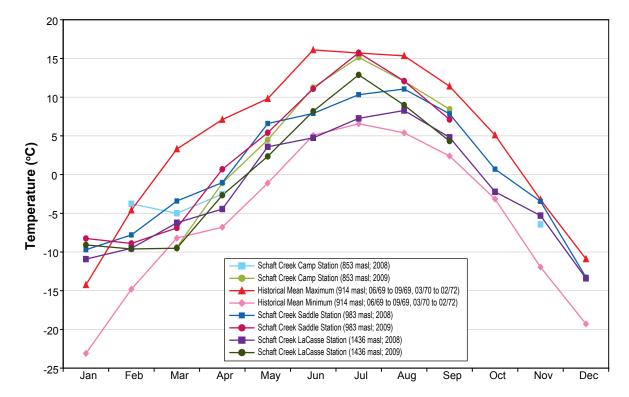
3.3.1 On-Site Data


Figure 3.3-1 and Table 3.3-1 summarize the total precipitation values for the Schaft Creek site specific and ClimateBC estimated precipitation (for the Shaft Creek Camp station location). ClimateBC is a software program that generates climate normal data for genecology and climate change studies in British Columbia. Genecology is a biological term for the study of plant and animal species and their environment.

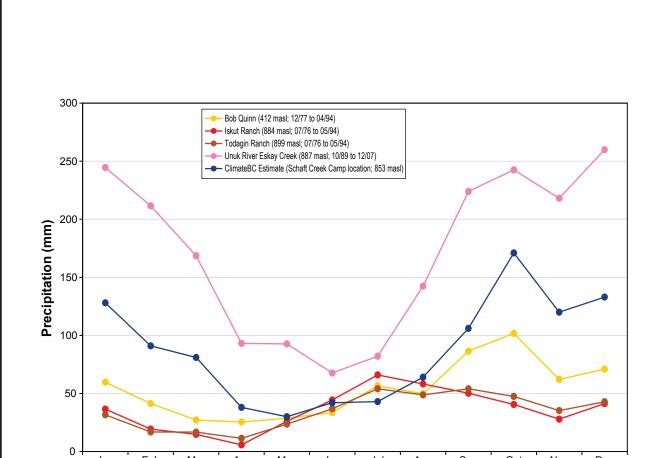
Precipitation was measured by the three automated meteorological stations in the Project area. The Schaft Creek Saddle station and the Mount LaCasse station measured total precipitation using a GEONOR precipitation gauge, and rain using a tipping bucket rain gauge. The Schaft Creek Camp station measured rain using a tipping bucket gauge and records only rainfall values.

Precipitation data measured in 2008 and 2009 at the on-site stations are intermittent and highly suspect due to the lack of equipment maintenance. It is important that precipitation gauges be inspected regularly for emptying, cleaning, or installation/removal of the snowfall adapter kit. Because the Schaft Creek Saddle and LaCasse stations were not visited for nearly 20 months it is impossible to know which of the data collected are reliable; therefore, on-site values presented in Table 3.3-1 should be used with a high degree of caution. Precipitation trends and annual total precipitation for 2008 and 2009 cannot be accurately estimated because of these concerns.

ClimateBC precipitation estimates based on 1971 to 2000 climate normal data show that the majority of precipitation in the area falls during the winter months, likely as snow. Total annual precipitation is estimated at 1,047 mm and this value should be used in preliminary engineering and feasibility studies until higher quality on-site data is collected.


Note: Only complete months of data were included.

Monthly Average Air Temperatures at the Schaft Creek Saddle, Mount La Casse and Regional Meteorological Stations



Note: Only complete months of data were included.

Monthly Average Air Temperatures at the Schaft Creek Saddle, Mount La Casse, Camp, and Historical Schaft Creek Meteorological Stations

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

FIGURE 3.3-1

Summary of Regional Monthly Precipitation

24/11/2009-10:00am

	Saddle		Camp ¹	Mount L	Mount LaCasse		
	GEONOR	Tipping Bucket	Tipping Bucket	GEONOR	Tipping Bucket	Estimate	
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
Jan-08	28	n/a	4	17	3	128	
Feb	36	45	35	31	8	91	
Mar	27	78	2	17	27	81	
Apr	33	121	26	16	20	38	
May	41	n/a	n/a	226	34	30	
Jun	13	n/a	n/a	248	38	42	
Jul	19	n/a	n/a	12	42	43	
Aug	93	n/a	n/a	61	83	64	
Sep	21	n/a	n/a	16	50	106	
Oct	n/a	n/a	n/a	33	42	171	
Nov	n/a	11	n/a	67	16	120	
Dec	n/a	10	n/a	18	0	133	
2008 Total	n/a	n/a	n/a	762	363	1,047	
Jan-09	n/a	0	n/a	39	0	128	
Feb	n/a	1	n/a	20	0	91	
Mar	n/a	4	n/a	22	0	81	
Apr	n/a	6	n/a	6	0	38	
May	n/a	21	n/a	13	9	30	
Jun	n/a	11	n/a	3	19	42	
Jul	n/a	5	n/a	4	23	43	
Aug	n/a	16	n/a	5	52	64	
Sep	78	40	n/a	0	140	106	
Oct	n/a	n/a	n/a	n/a	n/a	171	
Nov	n/a	n/a	n/a	n/a	n/a	120	
Dec	n/a	n/a	n/a	n/a	n/a	133	
2009 Total	n/a	n/a	n/a	n/a	n/a	1,047	

Table 3.3-1. Monthly Observed and Estimated Precipitation from the Schaft CreekMeteorological Stations

Notes: n/a – not available.

Maintenance was not conducted on the tipping bucket or GEONOR rain gauges for the majority of the measurement period and therefore, data should be considered with a high degree of caution.

¹: Camp station precipitation gauge only measures rainfall; it does not include snowfall.

3.3.2 Regional Data

The precipitation at the three inactive regional stations shows a steady decrease in precipitation through the winter months, with the lowest average monthly precipitation occurring in April (Table 3.3-2; Figure 3.3-1). From April, the precipitation increases through the late spring/early summer such that the peak precipitation occurs in July at Iskut and Todagin Ranch, and in October at Bob Quinn.

The seasonal trends at Unuk River Eskay Creek station show the driest month being June and the wettest month being December. The variations in the seasonal trends of the regional stations within a 100 km radius of the Project indicate that local climatic conditions within the area are complex and are influenced by large-scale regional factors such as mountain ranges and the Pacific Ocean, as well as smaller-scale factors such as local topography.

Station	Period of Record	Location	Approx. Distance to Project [km]	Elevation [masl]	Observed Average Annual Precipitation [mm]	Adjusted Average Annual Precipitation ¹ (mm)
lskut Ranch	1976- 1994	57°52′N; 131°10′W	57	854	435	435
Todagin Ranch	1973- 1992	57°36′N; 130°04′W	62	899	419	402
Telegraph Creek	1979- present	57°54′N; 130°20′W	63	250	369	546
Bob Quinn	1977- 1994	56°58′N; 130°15′W	65	610	642	767
lskut River	1976- 1994	56°43'58.80"N; 131°40'1.20"W	82	884	431	421
Unuk River- Eskay Creek	1989- 2006	56°39'10.74"N; 130°26'45.54"W	87	887	2,047	1,996
Dease Lake	1944- present	58°25′N; 130°00′W	130	807	426	443

Table 3.3-2. Environment Canada Meteorological Stations Near the Schaft Creek Project

Notes:

¹Scaled using orographic factor of 8% increase per 100 m rise in elevation (Coulson, 1991). Values scaled to elevation of the Schaft Creek Camp station (853 masl).

This likely over-predicts the annual precipitation.

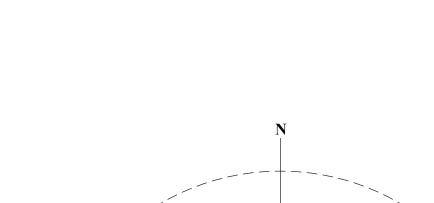
Typically, total precipitation increases with increasing elevation in mountainous terrain. Regional data suggests an increase in precipitation of approximately 8% for every 100 m of elevation gain (Coulson, 1991). A summary of annual precipitation at the closest regional meteorological stations is presented in Table 3.3-2. Observed values have been adjusted, using the scaling factor above, to the elevation of the Schaft Creek Camp station (853 masl). Again, it is clear that regional precipitation varies widely in the Schaft Creek area. Based on the historical site record, it is suspected that the Schaft Creek and the other regional stations and likely close to the annual Climate BC prediction of 1,047 mm.

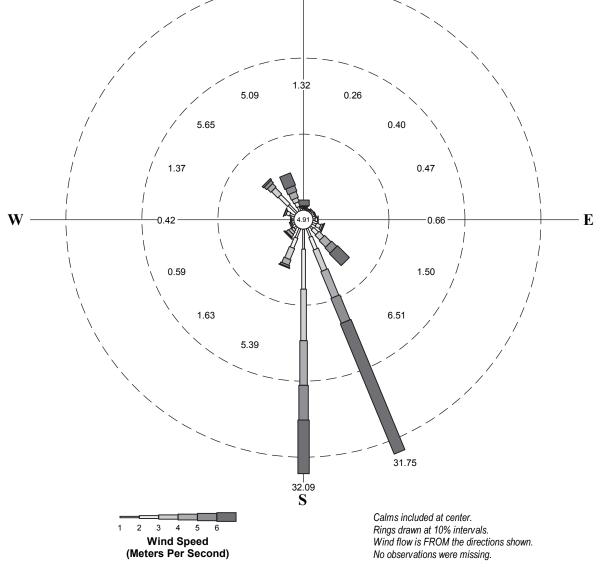
3.4 WIND SPEED AND DIRECTION

During the October 2009 field visit to Saddle station it was noted that the wind sensor had been damaged. Because of the lack of maintenance between February 2008 and October 2009 it is not clear when this damage occurred or the extent to which it may have affected the quality of the data; therefore, data collected from this sensor should be treated as suspect and utilized with caution.

The average annual wind speed measured at Schaft Creek Saddle meteorological station in 2008 was 2.0 m/s with monthly averages ranging from 1.6 m/s (November) to 3.0 m/s (October; Table 3.4-1). The maximum instantaneous wind speed was 17.9 m/s which was recorded at 12:21 AM on November 15, 2008. The station recorded calm wind conditions (i.e., hourly average wind speed less than 1.0 m/s) 22% and 43% of the time in 2008 and 2009 respectively. The dominant wind direction at Schaft Creek Saddle station in 2008 and 2009 was from the south (Figure 3.4-1 and Figure 3.4-2).

Month	Schaft Creek Saddle Station ¹	Schaft Creek Mount LaCasse Station
2008		
Jan	n/a	4.9
Feb	1.7	5.4
Mar	1.7	4.9
Apr	1.8	5.6
May	1.9	4.6
Jun	1.7	4.4
Jul	2.3	4.6
Aug	1.8	4.1
Sep	2.5	4.2
Oct	3.0	5.8
Nov	1.6	5.3
Dec	n/a	4.6
2009		
Jan	2.5	5.5
Feb	1.5	4.1
Mar	1.7	4.7
Apr	1.4	4.4
May	1.4	3.5
Jun	2.0	3.8
Jul	1.4	3.5
Aug	1.8	4.2
Sep	1.9	5.4
Oct	n/a	n/a
Nov	n/a	n/a
Dec	n/a	n/a

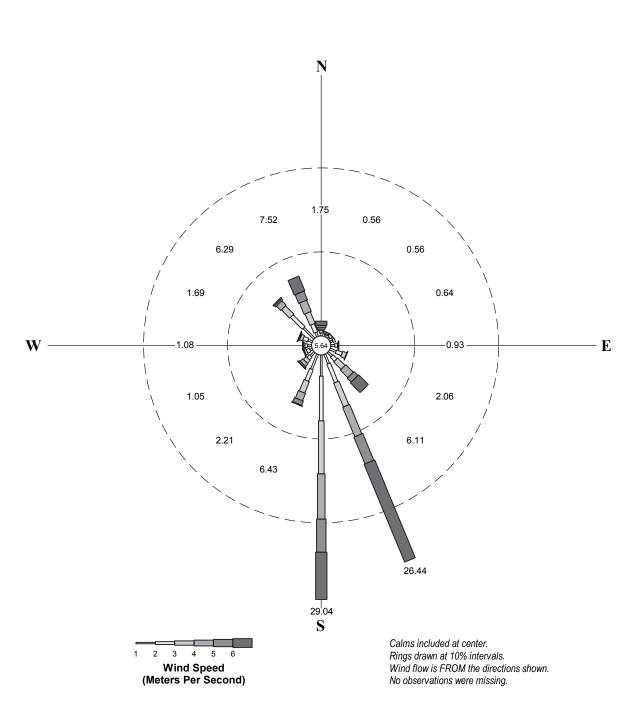

Table 3.4-1. Average Monthly Wind Speed (m/s)


Notes: n/a – not available.

¹ data should be viewed with caution as it is not clear when during the period from February 2008 to October 2009 the sensor at Saddle station was damaged. It is also not clear the extent to which that damage may have affected the quality of data recorded.

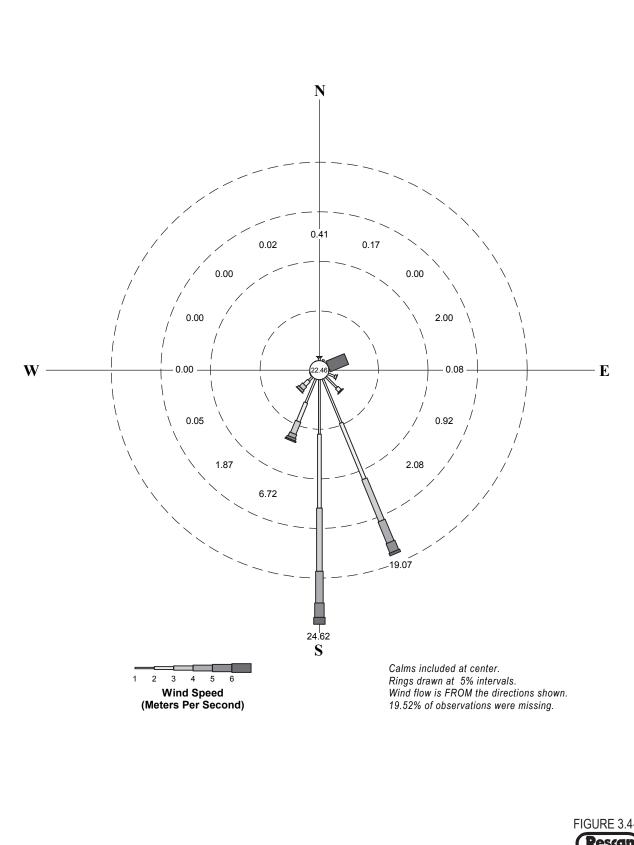
The annual average wind speed at the Mount LaCasse station was 4.9 m/s during 2008. The monthly average wind speed measured at the station ranged from 4.1 (August) to 5.8 m/s (October) (Table 3.4-1). The maximum instantaneous wind speed was 22.7 m/s during 2008 (October 2, 2008 at 12:15 AM) and 26.3 m/s during 2009 (January 29, 2009 at 11:22 PM). The elevated wind speeds measured at the LaCasse station (compared to the Saddle station) are due to a more exposed location and higher elevation (1,440 masl). The station recorded calm wind conditions only 5% and 6% of the time in 2008 and 2009, respectively. The dominant wind directions were from the south and southeast. The wind blew from these directions 64% and 55% of the time in 2008 and 2009, respectively.

Wind data recorded at the Shaft Creek Camp station was not reliable and intermittent due to sensor malfunction and has therefore been omitted from the report.



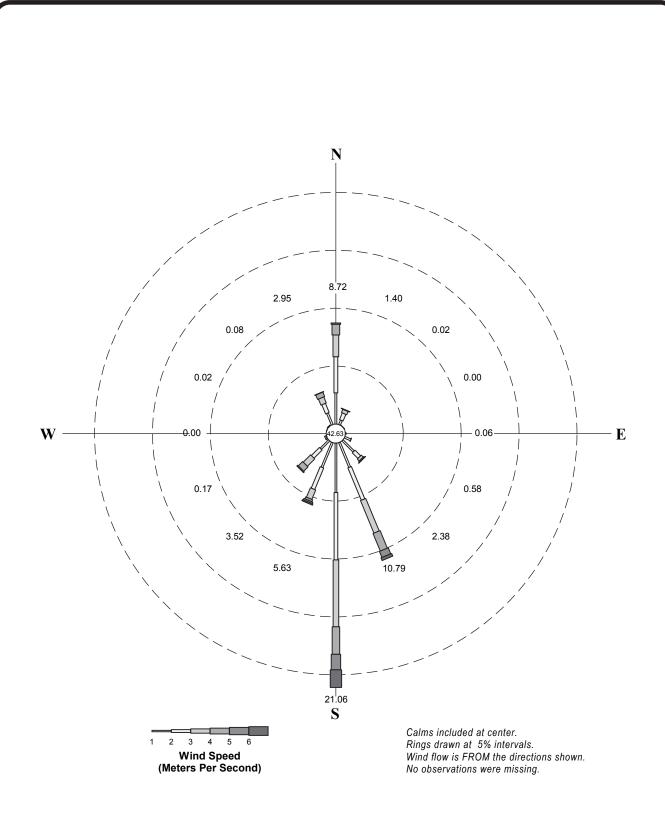
Note: Data should be viewed with caution as it is not clear when during the preiod from February 2008 to October 2009 the wind sensor at the Saddle station was damaged. It is also not clear the extent to which that damage may have affected the quality of data recorded. In addition, the Saddle wind sensor does not meet the MSC siting requirements.

Wind Rose for Schaft Creek Saddle Meteorological Station (2008)



Note: Data should be viewed with caution as it is not clear when during the preiod from February 2008 to October 2009 the wind sensor at the Saddle station was damaged. It is also not clear the extent to which that damage may have affected the quality of data recorded. In addition, the Saddle wind sensor does not meet the MSC siting requirements.

copper FOX metals inc. Wind Rose for Schaft Creek Saddle Meteorological Station (January to September, 2009)



Wind Rose for Mount LaCasse Meteorological Station (2008)

copper FO

metals inc.

Wind Rose for Mount LaCasse Meteorological Station (January to September 2009)

3.5 SOLAR RADIATION

Solar radiation is electromagnetic energy from the sun. Solar energy accounts for 99% of the earth's energy budget. The solar radiation incident on top of the terrestrial atmosphere is called extraterrestrial solar radiation. Ninety seven percent of this radiation is confined to the spectral range of 0.29 to 3.0 microns and is referred to as short-wave radiation. A portion of the extraterrestrial solar radiation penetrates through the atmosphere to the earth's surface, while part of it is scattered and/or absorbed by gases, aerosol particles, cloud droplets and cloud crystals in the atmosphere.

Global solar radiation is monitored at two of the Schaft Creek meteorological stations using a silicone pyranometer. Global solar radiation is the total incoming direct and diffuse short-wave solar radiation received from the whole dome of the sky on a horizontal surface.

The average annual solar radiation measured at Schaft Creek Saddle meteorological station in 2008 was 114 W/m² with monthly averages ranging from 11 (December) to 249 W/m² (June). The maximum hourly average solar radiation value recorded at the Saddle station during 2008 was 945 W/m² on June 9, 2008 at 1400 hours. The lowest solar radiation values were recorded during winter months when the sun is at its lowest angle and there is a higher frequency of low cloud cover that scatters and absorbs the solar radiation. All of the hourly average solar radiation values recorded at night were 0 W/m². Observed solar radiation at all sites is summarized in Table 3.5-1. Figure 3.5-1 shows daily solar radiation at Schaft Creek Saddle and LaCasse stations. Generally the solar radiation values were higher at the Mount LaCasse station because it is at a higher elevation and less affected by persistent clouds that tend to accumulate in the valley bottoms.

3.6 **SNOW**

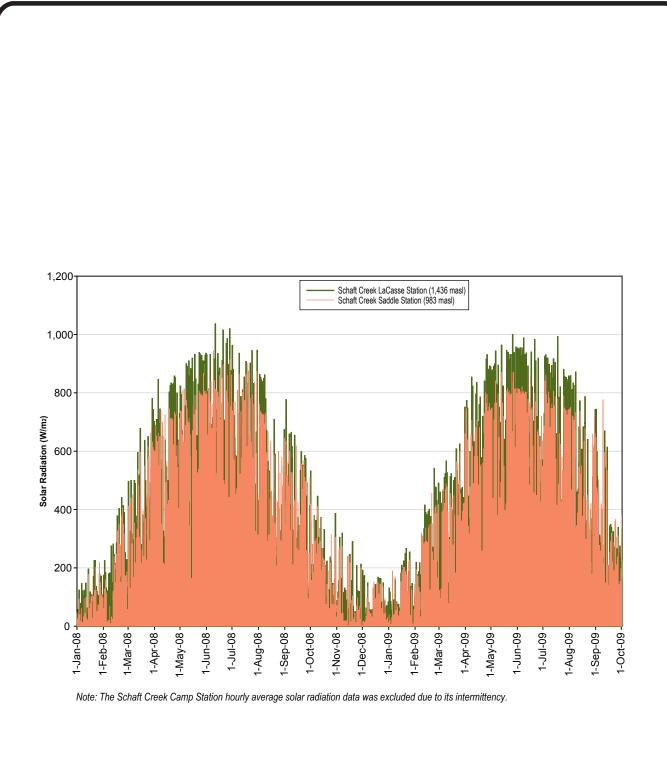
The baseline meteorology program included the following snow survey data collection:

- Snow depth was measured at the Schaft Creek Saddle station Mount LaCasse station on an hourly and daily basis and was also measured manually at the Schaft Creek Camp from January 1 to 31, 2008 and October 5, 2008 to May 5, 2009 (Section 2.3; Appendix 2); and
- Two snow courses were sampled February, April and May 2008 (SSCW1 and SSCW2).

3.6.1 Snow Depth

The snow depth data collected at the Schaft Creek Saddle meteorological station covers 22 months of data, and one full snow season (Figure 3.6-1). The ultrasonic snow sensor at the LaCasse station malfunctioned during June 2008; therefore, data was only available at that station for about 5.5 months. The peak snow depth at Saddle station was about 1.5 m in March of 2008 and 2.5 m in March of 2009. Regional Environment Canada snow pillow data from 3 stations close to the Project (Kinaskan Lake, Tumeka Creek, and Wade Lake) also showed significantly higher snow-water-equivalents (SWE) in 2009 with comparison to 2008. In the spring of 2008, snow began melting later at Schaft Creek LaCasse meteorological station (compared to Saddle station). This reflects the higher elevation of this station compared to Schaft Creek Saddle station. The monthly average air temperature for LaCasse station tends to be consistently lower than Saddle station which promotes early snow accumulation in the fall and late melting during the summer (Figure 3.2-1). Average monthly snow depths at Schaft Creek Camp meteorological station from January to April 2009 were similar to those recorded at Saddle station.

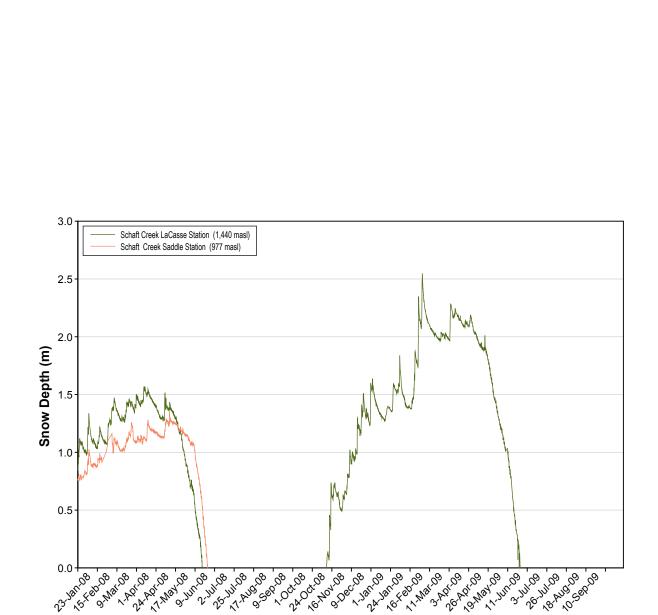
Month	Schaft Creek Saddle Station	Schaft Creek Mount LaCasse Station	Schaft Creek Camp Station
2008			
Jan	14	19	n/a
Feb	37	48	45ª
Mar	105	117	78 ª
Apr	177	195	121
May	231	253	n/a
Jun	249	249	n/a
Jul	211	211	n/a
Aug	158	160	n/a
Sep	110	108	n/a
Oct	48	50	n/a
Nov	15	22	11ª
Dec	11	14	10 ^a
Annual Average	114	249	n/a
2009			
Jan	17	20	9 ª
Feb	60	62	53ª
Mar	97	110	72
Apr	187	211	137
May	240	275	158
Jun	247	277	165
Jul	232	261	150
Aug	160	166	104ª
Sep	88	91	78 ª
Oct	n/a	n/a	n/a
Nov	n/a	n/a	n/a
Dec	n/a	n/a	n/a


Table 3.5-1. Average Monthly Solar Radiation (W/m²)

Notes: n/a – not available.

a = partial month, incomplete data set.

3.6.2 Snow Surveys


On-site snow survey measurements were taken at the beginning of February, April and May 2008 at Skeeter Lake Valley (SSCW1; 904 masl) and Schaft Creek High Elevation (SSCW2; 862 masl). The snow-water-equivalents (SWE) are summarized in Table 3.6-1 and snow survey field data sheets are presented in Appendix 1. Available data from regional Environment Canada snow pillows are also summarized in Table 3.6-1. Regional data from Kinaskan Lake (4D11P) and Wade Lake (4D14P) show that snow packs in 2009 were significantly deeper than those in 2008. Snow-water-equivalent was not measured at Tumeka Creek during 2008 but 2009 SWE was significantly higher than the 17-year average for that station. Historical regional data show that in general, snow tends to accumulate from January to April or May and then begins to melt. At Wade Lake (4D14P) average SWE peaked at 358 mm in May while SWE at Kinaskan Lake (4D11P) and Tumeka Creek (4D10P) peaked in April at 391 mm and 588 mm, respectively.

Hourly Average Solar Radiation at Schaft Creek Meteorological Stations

Note: The snow sensor at Schaft Creek LaCasse station malfunctioned during June 2008. Several of the measurements recorded by the data loggers at both stations were deemed 'poor quality' and removed from the data set.

Snow Depth at Schaft Creek Project Meteorological Stations

Table 3.6-1 Snow-Water-Equivalent (mm) for 2008 and 2009 Snow Surveys

	¹ Tumeka Creek (4D10P) Elevation = 1,220 masl				inaskan Lak (4D11P) tion = 1,020			¹ Wade Lake (4D14P) evation = 1,3		(SSC	ake Valley CW1) = 904 masl	Eleva (SSC	amp High ation CW2) = 862 masl
	17 Year			18 Year			17 Year						
Date	Average ²	2008	2009	Average ²	2008	2009	Average ²	2008	2009	2008	2009	2008	2009
1-Jan	333	n/a	406	191	127 ^a	332	189	201ª	279	n/a	n/a	n/a	n/a
1-Feb	444	n/a	570	277	189ª	458	249	260 ^a	397	195	n/a	379	n/a
1-Mar	517	n/a	n/a	329	243	n/a	289	385	n/a	n/a	n/a	n/a	n/a
1-Apr	588	n/a	704	391	285	587	348	339	461	283	n/a	478	n/a
1-May	568	n/a	735	347	316	602	358	307	479	218	n/a	518	n/a

n/a = not available

1: Source BCMOE 2007

2: Historical Data is available from 1967 onwards.

a: Sampling problems were encountered

3.7 DUSTFALL

The following section presents results of the 2007 and 2008 air quality monitoring program in the Schaft Creek Project area. In addition, detailed summaries of dustfall laboratory results are presented in Appendix 3.

3.7.1 Total Dustfall

Table 3.7-1 summarizes total dustfall results for July, August and September 2007 and June, July, August, and November 2008. All results were below the 1979 BC MOE Pollution Control Objectives for the Mining, Smelting and Related industries of BC (2.9 mg/dm²/d). The highest total dustfall value was 2.50 mg/dm²/day at FD1 during July 2008. This value was above several of the examples of dustfall criteria from other jurisdictions (including Alberta, Ontario, Australia, United Kingdom, and New York; Table 3.7-2). Most of these comparison criteria are for residential areas with the exception of the Australia criteria which are for new mines. A value of 2.50 mg/dm²/day would require pro-rata compensation but not total compensation in Australia. During the measurement period the overall average total dustfall was 0.35 mg/dm²/day and well below the BC Pollution Control Objective and the criteria presented for other jurisdictions. In general, average dustfall values are highest during the dry season when particulate matter can become airborne due to wind (Figure 3.7-1).

	Jul-07	Aug-07	Sep-07	Jun-08	Jul-08	Aug-08	Nov-08	Average
FD1	n/a	0.75	0.24	1.06	2.50	n/a	0.10	0.93
FD2	0.65	0.94	0.23	0.77	1.15	n/a	0.23	0.66
FD3	0.41	0.22	0.22	0.33	0.57	n/a	0.25	0.33
FD4	n/a	0.29	0.12	0.31	0.16	<10	0.16	0.18
FD5	n/a	0.23	0.11	0.50	0.36	<10	n/a	0.25
FD6	n/a	0.26	<10	0.14	0.17	<10	n/a	0.13
FD7	n/a	0.24	n/a	<10	0.19	0.11	n/a	0.15
FD8	n/a	0.87	<10	0.22	0.14	n/a	n/a	0.32
Average	0.53	0.48	0.15	0.42	0.66	0.02	0.19	0.35

Notes:

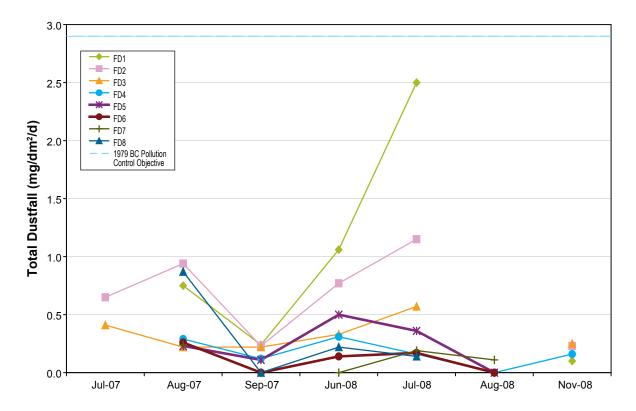
n/a = not available

The 1979 BC MOE Pollution Control Objectives for the Mining, Smelting and Related Industries of BC for dustfall is 1.7 to 2.9 mg/dm²/d.

All italicized cells were below detection limit values. For calculation of the average it was assumed that the below detection limit values were equal to 1/2 of the detection limit.

3.7.2 Acid Deposition

Acid deposition is primarily a result of SO_2 and NO_x emissions from industrial facilities. Since its emergence in the public conscience in the early eighties, Environment Canada has studied the sources and potential adverse effects of acid deposition on the Canadian environment (EC 2004).


Environment Canada measures acid deposition in terms of 'critical load', which is defined as the amount of acid deposition that a particular region can receive without being adversely affected. Chemical indicators of acid deposition are sulphate (SO_4^{2-}) and nitrate (NO_3^{-}) anions. The units commonly used to quantify acid deposition and critical loads are kg/ha/yr (kilograms per hectare per year of sulphate and/or nitrate) or eq/ha/yr (equivalent acid charge per hectare per year) (EC 2004). The unit used in this baseline report is kg/ha/yr.

		Dustfall Criterion	
Jurisdiction		Level (mg/dm²/d)	Comments
Alberta			
	residential and recreational areas	1.8	30 day averaging period
	commercial and industrial areas	5.3	31 day averaging period
Ontario		2.3	
Australia (new mines)		1.3	pro-rata compensation if level exceeded
		3.3	total compensation if level exceeded
United Kingdom			
-	open country	1.0	95th percentile - complaints likely if exceeded
	residential areas	1.5	96th percentile - complaints likely if exceeded
	commercial areas	1.9	97th percentile - complaints likely if exceeded
New York			
	Level I	1.0	
	Level II	1.0	
	Level III	1.3	
	Level IV	2.0	

Table 3.7-2. Examples of Dustfall Criteria Levels in Other Jurisdictions

Source: Hrebenyck & Enns 2005

Note: values of zero indicate deposition was below the detection limit Sampling did not take place during September or October 2008. Sampling only took place at FD2 and FD3 during July 2007; sampling did not take place at FD7 during September 2007; sampling did not take place at FD1, 2, 3, or 8 during August 2008; sampling did not take place at FD5, 6, 7, or 8 during November 2008.

Summary of Total Dustfall for the Schaft Creek Project Area

Estimates of critical loads ranges have been established for both aquatic and terrestrial ecosystems for many areas of Canada. Terrestrial critical loads have yet to be developed for coastal British Columbia. Table 3.7-3 shows the range of established critical loads for forest soil in other Canadian jurisdictions (EC 2004).

Province	Median (kg/ha/yr) ¹	5th Percentile
Newfoundland	28	12
Nova Scotia	39	13
Prince Edward Island	99	34
New Brunswick	56	27
Quebec	25	17
Ontario	26	19

Table 3.7-3. Forest Soil Critical Loads for Canadian Provinces

Note: ¹Assuming sulphate acid deposition.

Sulphate deposition was only detected twice while nitrate deposition was detected in several of the dustfall collectors during the measurement period (Table 3.7-4, Figures 3.7-2 and 3.7-3). The results showed that maximum acid deposition (1.78 kg/ha/yr) was well below median critical loads reported for different areas of Canada. The 1.78 kg/ha/yr value is the sum of the SO₄ potential deposition (0.0031 mg/dm²/d or 1.13 kg/ha/yr) and the NO₂ potential deposition (0.0018 mg/dm²/d or 0.65 kg/ha/yr). This potential deposition value was calculated from sulphate deposition at FD8 during July 2008 and nitrate deposition at FD6 during September 2007. It is important to note that this acid deposition neglects to take into consideration any neutralizing compounds found in the dustfall and soil. Therefore, actual loading is likely well below this prediction.

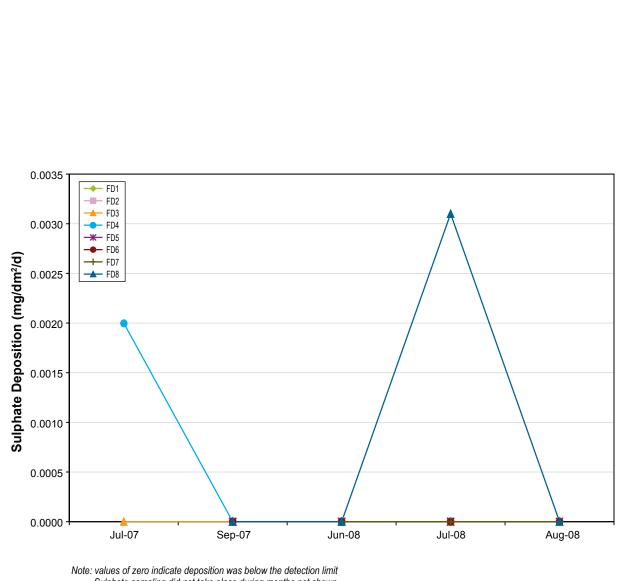
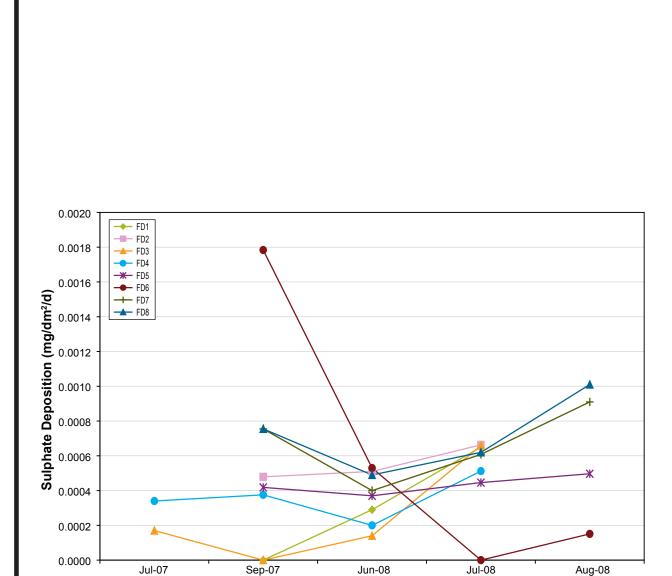

	Jul-07	Sep-07	Jun-08	Jul-08	Aug-08	Average
Sulphate						
FD1	n/a	<0.01493	<0.0090	<0.0030	n/a	0.0045
FD2	n/a	<0.01493	<0.0070	<0.0030	n/a	0.0042
FD3	<0.002	<0.01493	<0.0070	<0.0040	n/a	0.0035
FD4	0.0020	<0.01493	<0.0070	<0.0050	n/a	0.0039
FD5	n/a	<0.01493	<0.0080	<0.0030	<0.0070	0.0041
FD6	n/a	<0.01493	<0.0080	<0.0080	<0.0080	0.0049
FD7	n/a	n/a	<0.0060	<0.0090	<0.0030	0.0030
FD8	n/a	<0.01493	<0.0060	0.0031	<0.0020	0.0036
Average	0.0015	0.0075	0.0036	0.0026	0.0025	0.0035
Nitrate						
FD1	n/a	<0.0001493	0.00029	0.000650	n/a	0.0003
FD2	n/a	0.0004791	0.00051	0.000663	n/a	0.0006
FD3	0.000170	<0.0001493	0.00014	0.000659	n/a	0.0003
FD4	0.000340	0.0003755	0.0002	0.000512	n/a	0.0004
FD5	n/a	0.0004183	0.00037	0.000446	0.000497	0.0004
FD6	n/a	0.0017837	0.00053	<0.000080	0.000151	0.0006
FD7	n/a	0.0007548	0.0004	0.000608	0.00091	0.0007
FD8	n/a	0.0007548	0.00049	0.000620	0.00101	0.0007
Average	0.0003	0.0006	0.0004	0.0005	0.0006	0.0005

Table 3.7-4. Summary of Sulphate and Nitrate Deposition (mg/dm²·day)

Note: n/a = not available

All italicized cells were below detection limit values. For calculation of the average it was assumed that the below detection limit values were 1/2 of the detection limit value.

Sampling did not take place during August 2007.



Sulphate sampling did not take place during months not shown. Sampling only took place at FD2 and FD3 during July 2007; sampling did not take place at FD7 during September 2007; sampling did not take place at FD1, 2, 3, or 8 during August 2008; sampling did not take place at FD5, 6, 7, or 8 during November 2008.

Summary of Sulphate Deposition for the Schaft Creek Project Area

Note: values of zero indicate deposition was below the detection limit Nitrate sampling did not take place during months not shown.

Sampling only took place at FD2 and FD3 during July 2007; sampling did not take place at FD7 during September 2007; sampling did not take place at FD1, 2, 3, or 8 during August 2008; sampling did not take place at FD5, 6, 7, or 8 during November 2008.

Summary of Nitrate Deposition for the Schaft Creek Project Area

3.7.3 Metal Deposition

Maximum metal deposition values are summarized in Table 3.7-5. Maximum copper levels remained within the range of 0.0002 to 0.0130 mg/dm²/day. The peak copper level during this measurement period occurred at FD4 during September 2007. Many of the total metal concentrations were at or below the detection limits.

	(Marine Matal Davidian	(
Table 3.7-5. Summar	y of Maximum Metal Deposition	(mg/dm ⁻ /d)

Station	FD1	FD2	FD3	FD4	FD5	FD6	FD7	FD8	Maximum	Average
Aluminum (Al)-Total	0.006960	0.01150	0.00250	0.00110	0.00103	0.00057	0.00015	0.00084	0.01150	0.00308
Antimony (Sb)-Total	<	<	<	<	<	<	<	<	<	<
Arsenic (As)-Total	<	0.00001	<	<	<	<	<	<	0.00001	<
Barium (Ba)-Total	0.000152	0.00011	0.00006	0.00003	0.00003	0.00004	0.00002	0.00030	0.00030	0.00009
Beryllium (Be)-Total	<	<	<	<	<	<	<	<	<	<
Bismuth (Bi)-Total	<	<	<	<	<	<	<	<	<	<
Boron (B)-Total	<	<	<	<	<	<	<	<	<	<
Cadmium (Cd)-Total	<	<	<	<	<	<	<	<	<	<
Calcium (Ca)-Total	0.023500	0.01210	0.00686	0.04460	0.01370	0.00160	0.00136	0.01360	0.04460	0.01467
Chromium (Cr)-Total	0.000012	0.00004	<	<	<	<	<	<	0.00004	0.00002
Cobalt (Co)-Total	<	0.00001	<	<	<	0.00001	0.00001	<	0.00001	<
Copper (Cu)-Total	0.006320	0.00306	0.00157	0.01300	0.00749	0.00790	0.00748	0.00820	0.01300	0.00688
Iron (Fe)-Total	0.006550	0.01130	0.00241	0.00103	0.00078	<	<	0.00123	0.01130	0.00388
Lead (Pb)-Total	<	0.00001	<	0.00003	0.00001	0.00005	0.00004	0.00002	0.00005	0.00003
Lithium (Li)-Total	<	<	<	<	<	<	<	<	<	<
Magnesium (Mg)-Total	0.004500	0.01010	0.00150	0.00450	<	<	<	0.00280	0.01010	0.00468
Manganese (Mn)-Total	0.000297	0.00050	0.00017	0.00009	0.00008	0.00005	0.00005	0.00025	0.00050	0.00019
Mercury (Hg)-Total	<	<	<	<	<	<	<	<	<	<
Molybdenum (Mo)-Total	<	<	0.00001	0.00002	<	<	<	<	0.00002	<
Nickel (Ni)-Total	0.000011	0.00004	0.00001	<	<	0.00001	<	0.00001	0.00004	0.00002
Phosphorus (P)-Total	<	<	<	<	<	<	<	<	<	<
Potassium (K)-Total	<	<	<	<	<	<	<	<	<	<
Selenium (Se)-Total	<	<	<	<	<	<	<	<	<	<
Silicon (Si)-Total	0.011900	0.02030	0.00323	0.00159	0.00128	0.00190	<	0.00083	0.02030	0.00586
Silver (Ag)-Total	<	<	<	<	<	<	<	<	<	<
Sodium (Na)-Total	<	<	<	<	<	<	<	<	<	<
Strontium (Sr)-Total	0.000060	0.00005	0.00003	0.00004	0.00002	0.00002	0.00001	0.00003	0.00006	0.00003
Thallium (Tl)-Total	<	<	<	<	<	<	<	<	<	<
Tin (Sn)-Total	<	<	<	<	<	<	<	<	<	<
Titanium (Ti)-Total	0.000470	0.00066	0.00012	<	<	<	<	<	0.00066	0.00042
Uranium (U)-Total	<	<	<	<	<	<	<	<	<	<
Vanadium (V)-Total	0.000022	0.00004	<	<	<	<	<	<	0.00004	0.00003
Zinc (Zn)-Total	0.000118	0.00010	0.00010	0.00007	0.00008	0.00023	0.00015	0.00013	0.00023	0.00012

Note: Values of zero indicate deposition below detection limits

< = value below detection limit

4. Summary

4. Summary

Automated meteorological stations equipped with sensors for temperature, relative humidity, precipitation, solar radiation, snow depth, wind speed and wind direction were installed at three sites within the Schaft Creek Project area. Snow-water-equivalent was measured at two snow survey locations on site. Eight dustfall monitoring locations were used to evaluate the baseline air quality.

Data collection is on-going at Schaft Creek Saddle, Mount LaCasse and Schaft Creek Camp RainWise meteorological stations. Schaft Creek Saddle meteorological station was installed in October 2005; the Mount LaCasse and Schaft Creek Camp meteorological station were installed in August 2006. The Camp station is a RainWise Inc. station while the other two are Campbell Scientific Inc. stations. Snow surveys were conducted during February, April, and May 2008 at the Skeeter Lake Valley location and northeast of the camp.

The average annual air temperature at the Saddle station was 0.5°C in 2008, with monthly average air temperatures ranging from -13.3°C in December 2008 to 11.1°C in August 2008. The hourly minimum temperature recorded in 2008 was -32.4°C (January). The average annual air temperature at the LaCasse station was -1.9°C in 2008, with monthly average air temperatures ranging from -13.4°C in December 2008 to 8.3°C in August 2008. The hourly minimum temperature recorded in 2008 was -34.1°C (February). The Schaft Creek Camp station did not report a continuous data set and is therefore not discussed in terms of average temperatures. A complete data set for 2009 was not available at the time of reporting.

Precipitation recorded at all three meteorological stations during 2008 and 2009 was not reliable due to the lack of maintenance and sensor malfunction. Average annual precipitation estimated using ClimateBC/PRISM for the Camp station was 1,047 mm.

At the Mount LaCasse station the annual average wind speed was 4.9 m/s during 2008, the monthly average wind speed ranged from 4.1 (August) to 5.8 m/s (October), and the maximum instantaneous wind speed was 22.7 m/s during 2008 (October 2, 2008 at 12:15 AM). The dominant wind directions were from the south and southeast which combined occurred 64% and 55% of the time during 2008 and 2009, respectively.

The average annual solar radiation measured at Schaft Creek Saddle meteorological station in 2008 was 114 W/m² with monthly averages ranging from 11 (December) to 249 W/m² (June). The maximum hourly average solar radiation value recorded at the Saddle station during 2008 was 945 W/m² on June 9, 2008 at 1400 hours.

The peak snow depth at Saddle station was about 1.5 m in March of 2008 and 2.5 m in March of 2009. Regional Environment Canada snow pillow data from 3 stations close to the Project (Kinaskan Lake, Tumeka Creek, and Wade Lake) also showed significantly higher snow-water-equivalents (SWE) in 2009 with comparison to 2008.

In preparation for the future environmental assessment, a baseline air quality monitoring study using dustfall collectors took place in the summer and fall of 2007 and 2008. Eight dustfall stations were established during June 2007and monitored until November 2008. All total dustfall results were within BC Pollution Objectives (1979). Sulphate and nitrate contributions towards potential acid

deposition were found to be below critical load estimates for similar regions in Canada when calculated using maximum sulphate and nitrate depositions recorded during the period. Based on these findings, the air quality at the Schaft Creek Project can be summarized as good since all measured parameters fell well within applicable project objectives and guidelines.

References

References

- American Society for Testing and Materials (ASTM). 2004. *Standard Test Method for Collection and Measurement of Dustfall (Settleable Particulate Matter)*. Document No. ASTM D 1739 98 (Reapproved 2004).
- Environment Canada (EC). 2004. *Canadian Acid Deposition Science* accessed at http://www.msc-smc.ec.gc.ca/saib/acid/assessment2004/assessment_2004_e.pdf (August 24, 2009).
- BCMOE. 2007. Automated Snow Pillow Reporting. British Columbia Ministry of Environment website http://srmapps.gov.bc.ca/apps/aspr/ (accessed March 15, 2007)
- Coulson, C.H. 1991. *Manual of Operational Hydrology in British Columbia*. Edited by C.H. Coulson. British Columbia Ministry of Environment, Water Management Division, Hydrology Section.
- Environment Canada (EC). 2002. *CDCD V1.02 Canadian Daily Climate Data*. Climate Information Branch, Atmospheric Environment Service (CD-ROM).
- Hrebenyk, B. and Enns, K. Peer Review: Air Quality Monitoring Program, Diavik Mine. Prepared for Environmental Monitoring Approval Board. 2005.
- Meteorological Service of Canada (MSC). 2004. MSC Guidelines for Co-operative Climatological Autostations. Version 3.0. Environment Canada, Surface Weather, Climate and Marine Division, Atmospheric Monitoring Water Survey Branch.
- PRISM Group. 2001. PRISM Spatial Climate Layers Climate Mapping with PRISM. http://www.climatesource.com/docs/csguid.pdf (accessed November 2009).
- Rescan Tahltan Environmental Consultants (RTEC). 2007. Schaft Creek Project: 2006 Meteorology Baseline Report. Prepared for Copper Fox Metals Inc.
- Rescan Tahltan Environmental Consultants (RTEC). 2008. Schaft Creek Project: 2007 Meteorology Baseline Report. Prepared for Copper Fox Metals Inc.
- Wang, T., A. Hamann, D.L. Spittlehouse, S.N. Aitken. 2006. Development of scale-free climate data for Western Canada for use in resource management. *International Journal of Climatology*. 26(3): 383-397.

Appendix 1

Snow Survey Field Data Sheets

British Columbia Ministry of Water, Land and Air Protection- Environmental Protection Division- Flood Hazard/River Forecast Centre Schaft Creek Project Environmental Baseline Study (Project no. 830-1) for CopperFox Metals

Snow Course No.	SSCW1					FEB	2
Snow Course Name:		SKEETER L	AKE VALLEY		Year	Month	Day
Observer's Name:	CHR	IS DOUGHTY, DENNIS	DAY, BILL OSTRICH (PWH)	I		
Number of		Driving	g Wrench Used: Yes:	Х	Scale No.:	Rickly [DIGITAL
Tubes Used: 2		No:		Ι			
Station	Snow De	epth (cm)	Core Length	Weight of Tube	Weight Tube Only	Snow-Water	Density
Number	With Dirt Plug	Without Dirt Plug	(cm)	and Core (kg)	Before Sampling (kg)	Equivalent (cm)	(%)
1	99	97.5	76.5	2.27	2.02	18.7	24.4%
2	93.5	93	82	2.29	2.02	20.2	24.6%
3	96.5	96	78	2.27	2.02	18.7	24.0%
4	83	71.5	67.5	2.23	2.02	15.7	23.3%
5	93	91	78	2.28	2.02	19.4	24.9%
6	88.5	88	80	2.27	2.02	18.7	23.4%
7	88	87	73	2.27	2.00	20.2	27.6%
8	93	92	78	2.29	2.00	21.7	27.8%
9	93	91	80	2.28	2.00	20.9	26.2%
10	95	92	79	2.28	2.00	20.9	26.5%
Total		899.0				195.1	
Average		89.9				19.5	

	Please co	mplete in field	or as soon a	fte	r snow sam	pling as poss	ible.
	Time sa	mpling began	1400	h	ended	1600	h
Δ	Weather Cond	itions at Snow	Course				
		Freezing	Thawing		Temp	-12 °(2
		Blowing	Calm x		· · ·		
	Skies:	Clear	Partly Cloudy x		Overcast]	
	Precipitation:	None x	Raining		Snowing]	
В.	Surface Snow	Conditions at S	Snow Course	е			
	Fresh falle	n snow depth	<u>0</u> cm				
		Wet	Dry x				
		Soft x	Crusted				
	Support:	None		kies/s		Person on foot	
	Serious Drifting: Evidence of	No x	Yes*		Which Stations	<u> </u>	
	oversnow traffic:	Yes*	No x				
C.	Sampling Con	ditions					
		Easy	Moderately Difficult x		Very Difficult]	
	Ground Reached on all Samples:	Yesx	No*				
	Ice Layers:	In snowpack	On ground x			_	
	Ground under snow:	Dry x	Damp		Wet	Frozen x	
D.	General Condi						
	Th	Snow line elevation	0 met	res	Comonal	7	
	Thaw:	None x S Bridged	Sunny slopes		General]	
	Small streams:	with snow x	Open		Clear	Muddy	
	*Describe fully under	remarks					
E.	Remarks:						
	Romanio						

British Columbia Ministry of Water, Land and Air Protection- Environmental Protection Division- Flood Hazard/River Forecast Centre Schaft Creek Project Environmental Baseline Study (Project no. 830-1) for CopperFox Metals

Snow Course No.	SSCW2]			2008	FEB	2
Snow Course Name:		SCHAFT CREEK CA	MP HIGH ELEVATION		Year	Month	Day
Observer's Name:		CHRIS DOUGH	TY, DENNIS DAY]		
Number of		Drivin	g Wrench Used: Yes:	Х	Scale No.:	Rickly [JIGITAL
Tubes Used:	2		No:				
Station	Snow De	epth (cm)	Core Length	Weight of Tube	Weight Tube Only	Snow-Water	Density
Number	With Dirt Plug	Without Dirt Plug	(cm)	and Core (kg)	Before Sampling (kg)	Equivalent (cm)	(%)
1	119	117	107	2.34	2.00	25.4	23.7%
2	129	124	120	2.44	2.00	32.9	27.4%
3	121	119	107	2.39	2.00	29.1	27.2%
4	173	171	167	2.7	2.00	52.3	31.3%
5	176	174	160	2.69	2.00	51.6	32.2%
6	165	154	139	2.54	2.00	40.4	29.0%
7	142	140	124	2.49	2.00	36.6	29.5%
8	162	158	149	2.6	2.00	44.8	30.1%
9	139	135	128	2.48	2.00	35.9	28.0%
10	138	133	114	2.4	2.00	29.9	26.2%
Total		1425.0				378.9	
Average		142.5				37.9	

Please co	mplete in field	or as soon afte	r snow samplii	ng as possible.
Time of	maling began	a.m.	andad	a.m.
i ime sa	ampling began	<u> </u>	ended	<u>1300</u> p.m.
A. Weather Cond	litions at Snow	Course		
	Freezing x	Thawing	Temp	-12 °C
	Blowing	Calm x	·	
Skies:	<u> </u>	Partly Cloudy x	Overcast	
Precipitation:	None x	Raining	Snowing	
			5	
B. Surface Snow	Conditions at	Snow Course		
Fresh falle	en snow depth	<u>0</u> cm		
	Wet	Dry x		
	Soft x	Crusted		
Support:	None	Person on skies/	snowshoes x Pe	erson on foot
Serious Drifting:	No x	Yes*	Which Stations	
Evidence of		Nelv		
oversnow traffic:	Yes*	Nox		
C. Sampling Con	ditions			
		Moderately	Very	
	Easy	Difficult x	Difficult	
Ground Reached on all Samples:	Yes x	No*		
Ice Layers:	In snowpack	On ground x		
Ground under snow:	·	Damp	Wet	Frozen x
		2 ap		
D. General Cond				
	Snow line elevation	0 metres	·	
Thaw:		Sunny slopes	General	
Small streams:	Bridged with snow x	Open	Clear	Muddy
		000		
*Describe fully under	remarks			
Describe rany under	Ternarka			
E. Remarks:				

British Columbia Ministry of Water, Land and Air Protection- Environmental Protection Division- Flood Hazard/River Forecast Centre Schaft Creek - Meteorology and Air Quality (Project no. 912-1) SNOW SURVEY FIELD DATA SHEET

· · · ·	CC (11/1				0000	455	~
Snow Course No.	SSCW1	l			2008 Year	APR Month	1 Day
Snow Course Name:		SKEETER L				montur	Day
Observer's Name:			DQ,				
Number of	2	Drivino	g Wrench Used: Yes:	Х	Scale No.:		
Tubes Used:	2	1	No:				
Station Number	Snow De With Dirt Plug	epth (cm) Without Dirt Plug	Core Length (cm)	Weight of Tube and Core (cm)	Weight Tube Only Before Sampling (cm)	Snow-Water Equivalent (cm)	Density (%)
1	113	111	100	184.6	156.2	28.4	25.6
2	116	113	100	184.6	156.2	28.4	25.1
3	121	121	102	187.6	156.2	31.4	25.9
4	108	107	99	183.1	156.2	26.9	25.1
5	110	110	99	183.9	156.2	27.7	25.1
6	107	107	99	183.1	156.2	26.9	25.1
7	107	106	101	184.6	156.2	28.4	26.8
8	114	114	100	185.4	156.2	29.1	25.6
9	116	116	100	185.4	156.2	29.1	25.1
10	114	114	97	183.1	156.2	26.9	23.6
Total		1119				283.3	
Average		111.9				28.3	

	Please co	mplete in field	or as soo	n afte	r snow samp	ling as pos	ssible.
				a.m.			a.m.
	l ime sa	mpling began	1005	p.m.	ended	1035	p.m.
Α.	Weather Cond	itions at Snow	Course				
		Freezing X	Thawing		Temp	-7	°C
		Blowing X	Calm		·		-
	Skies:	0	Partly Cloudy		Overcast		
	Precipitation:	None X	Raining		Snowing		
	r recipitation.		rtaining		Showing		
В.	Surface Snow	Conditions at S	Snow Cou	irse			
	Fresh falle	n snow depth	0	cm			
		Wet	Dry				
		Soft	Crusted				
	Support:	None	Person	on skies/s	snowshoes X	Person on foot	t
	Serious Drifting:	No X	Yes*		Which Stations		
	Evidence of				-		
	oversnow traffic:	Yes*	No	Х			
c.	Sampling Con	ditions					
			Moderately		Very		
		Easy X	Difficult		Difficult		
	Ground Reached						
	on all Samples:	Yes X	No*				
	Ice Layers:	In snowpack X	On ground				
	Ground under snow:	Dry X	Damp		Wet	Frozer	1
D.	General Condi	tion en Route					
		Snow line elevation	0	metres			
	Thaw:	None X	Sunny slopes		General		
		Bridged					
	Small streams:	with snow X	Open		Clear	Muddy	/
	*Describe fully under	remarks					
F	Remarks:						
Ľ.	Kemarks.						
1							
1							
1							

British Columbia Ministry of Water, Land and Air Protection- Environmental Protection Division- Flood Hazard/River Forecast Centre Schaft Creek - Meteorology and Air Quality (Project no. 912-1)

Snow Course No.	SSCW2				2008	APR	1
Snow Course Name:		SCHAF	T CAMP		Year	Month	Day
Observer's Name:		OD,	DQ,]		
Number of		Driving	g Wrench Used: Yes:		Scale No.:		
Tubes Used:	2		No:		J		
Station Number	Snow De With Dirt Plug	epth (cm) Without Dirt Plug	Core Length (cm)	Weight of Tube and Core (cm)	Weight Tube Only Before Sampling (cm)	Snow-Water Equivalent (cm)	Density (%)
1	164	163	153	202.5	156.2	46.3	28.4
2	153	150	152	201.8	156.2	45.6	30.4
3	150	150	140	201.1	156.2	44.8	29.9
4	176	176	176	213.8	156.2	57.5	32.7
5	193	193	172	266.1	214.5	51.6	26.7
6	165	163	157	256.4	214.5	41.9	25.7
7	192	190	187	266.1	214.5	51.6	27.1
8	191	191	174	266.1	214.5	51.6	27.0
9	163	161	157	257.1	214.5	42.6	26.5
10	171	170	159	259.3	214.5	44.8	26.4
Total		1707.0				478.3	
Average		170.7				47.8	

	Please cor	mplete in field (or as soon af	ter snow sam	pling as po	ssible.
	Time sa	mpling began	a.m. 1100 p.m.		1245	a.m. p.m.
						_ F
Α.	Weather Cond	itions at Snow		1 _		
		Freezing X	Thawing	Temp	-7	-°C
		Blowing	Calm X		1	
	Skies:		Partly Cloudy X	Overcast]	
	Precipitation:	None X	Raining	Snowing	J	
В.	Surface Snow	Conditions at S	Snow Course			
	Fresh falle	n snow depth	<u>0</u> cm			
		Wet	Dry]		
		Soft	Crusted]		
	Support:	None		es/snowshoes X	•	t
	Serious Drifting:	No X	Yes*	Which Stations		
	Evidence of oversnow traffic:	Yes* X	No	1		
				4		
C.	Sampling Con	ditions				
		Easy	Moderately Difficult	Very Difficult X]	
	Ground Reached		No*	٦		
	on all Samples: Ice Layers:	Yes X In snowpack X	No* On ground]		
	Ground under snow:	Dry	Damp	Wet X	Frozen	
				J <u> </u>	1	
D.	General Condi	Snow line elevation	0 metre	s		
	Thaw:		Sunny slopes X		1	
		Bridged	, , <u> </u>	J	1	
	Small streams:	with snow X	Open	Clear	Muddy	/
	*Describe fully under	remarks				
Е.	Remarks:	ONE TRAIL WOL	F			
Í						

British Columbia Ministry of Water, Land and Air Protection- Environmental Protection Division- Flood Hazard/River Forecast Centre

Schaft Creek - Meteorology and Air Quality (Project no. 912-1)

Snow Course No.	SSCW1]			2007	Apr	30
Snow Course Name:		SKEETER L	AKE VALLEY		Year	Month	Day
Observer's Name:		OD,	DQ,]		
Number of		Driving	g Wrench Used: Yes:	Х	Scale No.:	20	Ft
Tubes Used:	2		No:]		
Station	Snow De	epth (cm)	Core Length	Weight of Tube	Weight Tube Only	Snow-Water	Density
Number	With Dirt Plug	Without Dirt Plug	(cm)	and Core (cm)	Before Sampling (cm)	Equivalent (cm)	(%)
1	80	77	40	175.6	149.5	18.7	24.3
2	77	75	40	174.9	149.5	17.9	23.9
3	75	74	50	178.6	149.5	21.7	29.3
4	85	82	42	180.1	149.5	23.2	28.3
5	81	79	45	177.1	149.5	20.2	25.5
6	81	80	56	179.4	149.5	22.4	28.0
7	79	78	51	178.6	149.5	21.7	27.8
8	81	78	54	180.9	149.5	23.9	30.7
9	81	79	40	180.9	149.5	23.9	30.3
10	86	84	58	181.6	149.5	24.7	29.4
Total		786.0				218.2	
Average		78.6				21.8	

	Please co	mplete in field o	or as soo	n afte	r snow sa	mpling as	possible.
	Time sa	mpling began	1415	a.m. p.m .	ended	1545	a.m. 5 p.m.
							I
Α.	Weather Cond	itions at Snow					
		Freezing	Thawing		Temp	0	°C
		Blowing X	Calm				
	Skies:		Partly Cloudy		Overcast		
	Precipitation:	None X	Raining		Snowing		
В.	Surface Snow	Conditions at S	Snow Cou	ırse			
	Fresh falle	n snow depth	0	cm			
		Wet	Dry				
		Soft	Crusted				
	Support:	None		on skies/	snowshoes		n foot X
	Serious Drifting:	No X	Yes*		Which Static	ons	
	Evidence of oversnow traffic:	Yes*	No	Х			
C.	Sampling Con	ditions					
		Easy	Moderately Difficult		Very Difficult	X	
	Ground Reached on all Samples:	Yes X	No*				
	Ice Layers:	In snowpack X	On ground				
	Ground under snow:	Dry	Damp		Wet	x Fi	rozen
D.	General Condi	tion en Route					
		Snow line elevation	0	metres			
	Thaw:		Sunny slopes		General	X	
	Small streams:	Bridged with snow	Open	Х	Clear	N	luddy
_	*Describe fully under	remarks					
_	-						
E.	Remarks:						
1							

British Columbia Ministry of Water, Land and Air Protection- Environmental Protection Division- Flood Hazard/River Forecast Centre Schaft Creek - Meteorology and Air Quality (Project no. 912-1)

Snow Course No.	SSCW2	Ι			2007	Apr	30
Snow Course Name:		Schaft Camp	High Elevation		Year	Month	Day
Observer's Name:		OD,	DQ,				
Number of		Driving	g Wrench Used: Yes:		Scale No.:	20	Ft
Tubes Used:	2	<u> </u>	No:				
Station Number	Snow D With Dirt Plug	epth (in) Without Dirt Plug	Core Length (in)	Weight of Tube and Core (in)	Weight Tube Only Before Sampling (in)	Snow-Water Equivalent (in)	Density (%)
1	165	162	164	204.8	151.0	53.8	33.2
2	152	149	143	195.8	151.0	44.8	30.1
3	141	140	117	191.3	151.0	40.4	28.8
4	190	189	185	217.5	151.0	66.5	35.2
5	175	175	174	268.3	210.0	58.3	33.3
6	185	183	168	266.1	210.0	56.1	30.6
7	176	176	151	259.3	210.0	49.3	28.0
8	162	162	156	263.8	210.0	53.8	33.2
9	151	151	138	260.1	210.0	50.1	33.2
10	149	146	112	254.9	210.0	44.8	30.7
Total		1633.0				517.9	
Average		163.3				51.8	

	Please co	mplete in field o	or as soon	afte	r snow sa	mpling as p	oossible.
	Time sa	mpling began	1205	a.m. p.m.	ended	1355	a.m. p.m.
				•			·
А.	weather Cond	itions at Snow	-	V	Tomp	0	°C
		Freezing Blowing X	Thawing Calm	Х	Temp	0	O
	Skies:	3	Partly Cloudy	Х	Overcast		
	Precipitation:	None X	Raining	~	Snowing	-	
B	-	Conditions at S		rso			
Б .		n snow depth		rse cm			
	Trestribute	Wet	 Dry	,			
		Soft	Crusted				
	Support:	None	Person or	n skies/s	snowshoes	Person on	foot X
	Serious Drifting:	No X	Yes*		Which Static	ons	
	Evidence of oversnow traffic:	Yes*	No	Х			
C.	Sampling Con	ditions					
		Easy	Moderately Difficult	Х	Very Difficult		
	Ground Reached on all Samples:	Yes X	No*				
	Ice Layers:	In snowpack X	On ground				
	Ground under snow:	Dry x	Damp		Wet	Fro	zen
D.	General Condi	tion en Route					
		Snow line elevation		netres			
	Thaw:		Sunny slopes		General >	(
	Small streams:	Bridged with snow	Open	Х	Clear	Mu	ddy
	*Describe fully under	remarks					
F	Remarks:						
Ľ.	Remarks.						

Appendix 2

Manual Measurement Log

Legend

Rescan Met Stn = Rescan meteorology station R= rain S = snow SH= rain showers FL= snow flurries Str = stratus clouds Cir = cirrus clouds Cu = cumulus cloud SI = sleet storm [rain/snow] O/N = over night O/D = over dayT = trace [T = <.25" of snow] Cloud cover was observed during the morning (7:30 AM). Snow depth readings for total snow fall are taken early am for 24 hr. period.

	Snow on Grou	Ind								Temp	erature	
		Rescan Met	Precipitation	Precipitation Over-	New	Accumulated				Low (7:30		
Date	Camp	Stn	Overnight	day	Snow	Snow	Wind Direction	Wind Speed	Cloud Cover	AM)	(3:30 PM)	Remarks
	(in)	(in)	(in)	(in)	(in)	(in)				(°C)	(°C)	
Jan-08	30	6.2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-6.5	-4.7	
Jan-08	30	6.4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-5.6	-2.5	
Jan-08	30	6.4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-6.6	-6.2	
Jan-08	30	6.4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-11.6	-7.8	
Jan-08	30	6.4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-9.6	-6.4	
Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-16.2	-14	
Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-17.3	-13	
Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-14	-8.9	
Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-10.9	-3.3	
0-Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-9.6	-6.4	
1-Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-12	-5	
2-Jan-08	34	6.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-5.1	-1	
3-Jan-08	35	7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-6.5	-3.5	
4-Jan-08		7.5		n/a						-0.5	-8.3	
4-Jan-08 5-Jan-08	36 36	7.5	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a biab	n/a n/a	-11.1 -6.5	-8.3 -0.5	
						n/a		high				
6-Jan-08	36	7.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.5	2.6	
7-Jan-08	36	7.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0	1.5	
8-Jan-08	32	6.4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.9	3.6	
9-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-3.3	-1.6	
0-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-16.8	-10.6	
1-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-19.9	-12.2	
2-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-16.1	-8.8	
3-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-12.7	-7.5	
4-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-8.1	-4.4	
5-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-5.4	-1.5	
6-Jan-08	34	6.7	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-4.2	-9.2	
7-Jan-08	34	6.7	n/a	n/a	n/a	n/a	north	n/a	n/a	-24.9	-24.1	
8-Jan-08	34	6.9	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-37.6	-25.6	
9-Jan-08	34	6.9	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-26.3	-22.1	
0-Jan-08	34	6.9	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-26.3	-22.2	
1-Jan-08	34	6.9	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-33.4	-22.6	
						Missing Februa	ry 1, 2008 to October 5, 2008.					
Oct-08	Snow level 5000 ft.	n/a	n/a	n/a	n/a	0	n/a	n/a	n/a	1.1	6.8	
-Oct-08	Snow level 3000 ft.	n/a	Light r/s	Light r/s	n/a	0	n/a	n/a	n/a	0.1	7.4	
-Oct-08	0.25	0.25	n/a	n/a	n/a	0.25	n/a	n/a	n/a	-0.6	6.1	
-Oct-08	Snow level 4000 ft	n/a	n/a	s/fl	n/a	0.25	n/a	n/a	n/a	-3.5	3	
Oct-08	Snow level 4000 ft.	n/a	n/a	n/a	n/a	0.25	n/a	n/a	clear	-5.3	3	
0-Oct-08	Snow level 4000 ft.	n/a	n/a	n/a	n/a	0.25	n/a	n/a	str cir	-5.3	6.1	
1-Oct-08	Snow level 4500 ft.	n/a	r	r	n/a	0.25	n/a	n/a	n/a	2.6	7.1	
2-Oct-08	Snow level 5000 ft.	n/a	r/sl	sh	n/a	0.25	n/a	n/a	8str	-0.5	8.1	
3-Oct-08	0.25	0.25	n/a	n/a	n/a	0.5	n/a	n/a	1 str	-0.2	2.7	
4-Oct-08	n/a	n/a	n/a	n/a	n/a	0.5	n/a	n/a	10 str	-0.5	6	
5-Oct-08	n/a	n/a	r/sh	r/sh	n/a	0.5	n/a	n/a	10 str	3.2	7.1	
5-Oct-08	n/a	n/a	n/a	n/a	n/a	0.5	n/a	n/a	10 str	2	6	
7-Oct-08	3.5	3.5	n/a	n/a	n/a	4	n/a	n/a	4st/cir	-0.6	4.3	
8-Oct-08	5.5	3.5 1	n/a n/a	n/a		4 5				-0.6	4.3 5.3	
9-Oct-08	Т	T		r/sl	n/a n/a	5	n/a	n/a	9 str	-2.6	2.8	
		T	T (s/fl)	1/51	n/a		n/a	n/a	10 str			
0-Oct-08	Т	T	r	1-	n/a	5.25	n/a	n/a	10 str	0.3	4.6	
1-Oct-08	Т		n/a	n/a	n/a	5.25	n/a	n/a	10 alto str	-0.7	4.3	
2-Oct-08	4.5	4.5	n/a	n/a	n/a	10.25	n/a	n/a	10 str	0.6	3.7	
3-Oct-08	2.5	2.5	r/sh	s/fl	n/a	10.25	n/a	n/a	10 str	-0.1	1.7	
4-Oct-08	8	8	S	r	n/a	17.25	n/a	n/a	10str	1.1	2.1	
5-Oct-08	6	4	s/fl	s/fl	n/a	18.75	n/a	n/a	10str	-4.6	-1.7	
6-Oct-08	n/a	n/a	n/a	n/a	n/a	20	n/a	n/a	n/a	-6.4	1.2	
7-Oct-08	7.25	4.25	sl	n/a	n/a	20.25	n/a	n/a	10 str	0.3	3.7	

Appendix 2. Manual Measurement Log

	Snow on Gr										perature	
D -4-	6	Rescan Met	•	Precipitation Over-		Accumulated	Wind Direction	Wind Coursed	claud Carry	Low (7:30		Demode
Date	Camp	Stn (in)	Overnight (in)	day	Snow (in)	Snow (in)	Wind Direction	Wind Speed	Cloud Cover	AM) (°C)	(3:30 PM) (°C)	Remarks
8-Oct-08	(in) 6	(III)	sl	(in) sh	n/a	21.25	n/a	n/a	10 str	0.6	4	
9-Oct-08	5	3	T	fl	n/a	21.25	n/a	n/a	10 str	-1.5	2.2	
0-Oct-08	5	3	n/a	n/a	n/a	21.25	n/a	n/a	9 str	-6.1	0.6	
1-Oct-08	5	3	s	fl	n/a	21.25	n/a	n/a	10 str	-7.9	-2.2	
-Nov-08	6	4	fl	fl/r	n/a	23.5	n/a	n/a	10 str	-7.4	1.7	
-Nov-08	5	3	sh	r/sl	n/a	23.5	n/a	n/a	10 str	0.4	2.5	
-Nov-08	5	3	sh	n/a	n/a	23.5	n/a	n/a	10 str	0.4	2.5	
-Nov-08	5	3	n/a	n/a	n/a	23.5	n/a	n/a	1 str	-8.4	1	
-Nov-08	5	3	fl	Т	n/a	23.5	n/a	n/a	6 str	-10.5	-2.1	
-Nov-08	6.75	4.75	fl	fl	n/a	25.25	n/a	n/a	10 str	-3.4	1.2	
-Nov-08	6.75	4.75	fl	fl	n/a	26	n/a	n/a	3 str	-0.6	4	
-Nov-08	6.75	4.75	s	n/a	n/a	26.5	n/a	n/a	10 str	-2.2	-0.1	
-Nov-08	10.25	8.25	n/a	n/a	n/a	30	n/a	n/a	10 str	-3.9	-2.7	
0-Nov-08	10.25	8.25	fl	fl	n/a	30	n/a	n/a	10 str	-8.7	-5.4	
1-Nov-08	14.75	12.75	s	s	n/a	34.5	n/a	n/a	10 str	-8	-3	
2-Nov-08	21.75	19.75	fl	fl	n/a	41.5	n/a	n/a	10 str	-4.2	2	
3-Nov-08	21.75	19.75	n/a	s	n/a	41.75	n/a	n/a	10 str	-2.9	2.7	
4-Nov-08	27.5	25.5	n/a	s	n/a	46.5	n/a	n/a	10 str	-4.3	-0.9	
5-Nov-08	20	15.7	fl	n/a	n/a	48	n/a	n/a	8 st	0.2	1.8	
6-Nov-08	20	15.7	n/a	n/a	n/a	48	n/a	n/a	clear	-14	-4.9	
7-Nov-08	22.5	18.2	fl	s	n/a	54	n/a	n/a	10 str	-8.5	-4.5	
8-Nov-08	26.5	22.2	s	n/a	n/a	58	n/a	n/a	clear	-15.3	-5.2	
9-Nov-08	26.5	22.2	n/a	n/a	n/a	58	n/a	n/a	10 str	-16.3	-9.7	
0-Nov-08	28.5	22.2	n/a	n/a	n/a	60	n/a	n/a	10 str	-9.9	-3.6	
1-Nov-08	34	25.7	т	s	n/a	63.5	n/a	n/a	10 str	-6.5	-3.8	
2-Nov-08	24	19.6	s	s	n/a	65.75	n/a	n/a	10 str	-3.5	0	
3-Nov-08	33.25	28.75	s	s	n/a	75	n/a	n/a	10 str	-2.3	-1.7	
4-Nov-08	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
5-Nov-08	28	23.5	1.5	0	1.5	79.5	pm warm south wind	10-15 mph	8 str	-2.4	0	
6-Nov-08	28	23.5	0	0	0	79.5	gusty south winds	10-20 mph	10 str	0	2.7	
7-Nov-08	27	24.5	2	Т	2	81.5	light NE wind	fl	10 str	-1	1	
8-Nov-08	31.5	29	2.5	2	4.5	86	calm	0	10 str	0.3	1.7	snow
9-Nov-08	28	27	4	Ō	4	90	s wind	5 mph	9 str	-3.2	0.7	clearing
0-Nov-08	28	27	4	6	10	100	calm	n/a	10 str	-1.1	-0.3	snow
-Dec-08	32	32.5	0.25	0	0.25	100.25	s wind	5-10 mph	clear	-10.6	-8.6	
-Dec-08	32	32.5	0	0	0	100.25	east	0-1 mph	clear	-17.2	-11.2	
-Dec-08	30	30.5	0	0	0	100.25	south	0-1 mph	6 str	-17.9	-12.4	
-Dec-08	30	30.5	0	2.25	2.25	102.5	south	0-15 mph	10 str	-3	5.1	snow/rain
-Dec-08	30	30.5	0	0.75	0.75	103.25	NE>S	0-2	10 str	-0.7	1	fog/fl
-Dec-08	30	30.5	2.5	n/a	2.5	105.75	N>S	0-1	10 str	-1.8	2.6	
-Dec-08	30	30.5	0	0	0	105.75	south	5-10 mph	1 str	-1.9	2.7	
-Dec-08	29	29.5	0.5	n/a	0.5	106.25	south	1-5 mph	4str>10 str	-3.2	1	
-Dec-08	34	32.5	7.75	Т	7.75	114	NNE>S	2-5 mph	10 str	-9.5	-0.1	s/storm
0-Dec-08	34	32.5	1	0	1	115	S	0-1 mph	10 str	-1.8	0.5	
1-Dec-08	34.5	34	3	0.5	3.5	118.5	S	1-5 mph	10 str>7 str	-1.2	-0.5	snow
2-Dec-08	32	33.5	0.25	0	0.25	118.75	E>NE	5-10 mph	10 str	-10.6	-5.9	fl/o/n
3-Dec-08	32	33.5	0	0	0	118.75	N	5-15mph	2 str	-15.2	-14.8	gusty
4-Dec-08	32	33.5	0	0	0	118.75	S	0-5	clear	-26.3	-22	S drift
5-Dec-08	32	33.5	0	0	0	118.75	S	0-5	8 str/cir	-27.5	-20.4	drift
6-Dec-08	30	31.5	0	0.5	0.5	119.25	ENE	0-5 mph	10 str	-24.6	-10.6	drift/fl
7-Dec-08	30	31.5	0	0	0	119.25	NE>S	0-5 mph	3 str	-21.7	-16.4	drift
8-Dec-08	28	29.5	0	0	0	119.25	variable	0	clear	-29.9	-23.8	drift
9-Dec-08	28	29.5	0	0	0	119.25	S	1-3 mph	clear	-32.9	-26.6	drift
0-Dec-08	28	29.5	0	0	0	119.25	variable	0-3 mph	2 str	-33.8	-25.2	drift
1-Dec-08	28	29.5	0	0	0	119.25	variable	0	clear	-33.8	-28.3	drift
2-Dec-08	28	29.5	0	0	0	119.25	E	1-5 mph	clear	-31.7	-26.5	drift

	Snow on Gr										erature	
		Rescan Met	•	Precipitation Over-		Accumulated			a 1.a	Low (7:30		
Date	Camp	Stn	Overnight	day	Snow	Snow	Wind Direction	Wind Speed	Cloud Cover	AM)	(3:30 PM)	Remarks
2.0.	(in)	(in)	(in)	(in)	(in)	(in)		1.5	10 -t-	(°C)	(°C)	1.:6
3-Dec-08	28	29.5	0	0	0	119.25	S	1-5 mph	10 str	-28.1	-18	drift
4-Dec-08	28	29.5	0	0	0	119.25	N	2-5 mph	4 str	-22.2	-15.7	drift
5-Dec-08	28	29.5	0	0	0	119.25	S	2-5 mph	3 str	-23.7	-20.2	drift
6-Dec-08	28	29.5	0	2	2	121.25	ENE	1-3 mph	10 str	-16	-9.3	drift/fl
7-Dec-08	30	30	0.25	0	0.25	121.5	S	1-3 mph	9 str	-9.3	-6.3	drift/fl
8-Dec-08	30	30	2	0	2	123.5	S fl	0-3 mph	10 str	-11.1	-9.6	drift S o/n
9-Dec-08	30	30	2.25	0	2.25	125.75	N fl	0-3 mph	10 alto str	-17.7	-15.1	drift
0-Dec-08	30	30	0.25	0	0.25	126	N fl	0-3 mph	10 str	-22.4	-19.9	drift
1-Dec-08	32	32.5	0.75	0	0.75	126.75	N fl	0-3 mph	10 str	-22.4	-19.9	drift
-Jan-09	32	32.5	0	0	0	126.75	S>N	0-3 mph	clear	-33.3	-26.6	drift
-Jan-09	32	32.5	0	0	0	126.75	variable	0-3 mph	8 str	-34.1	-24.8	drift
-Jan-09	32	32.5	1	0	1	127.75	ENE	2-5 mph	10.str	-30.1	-20	drift
-Jan-09	32	32.5	2.25	3	5.25	133	SW S	1-5 mph	10 str	-16.4	-5.1	drift S o/n
-Jan-09	32	32.5	4	0	4	137	calm	0-2 mph	10 str	-11.1	-12.2	drift
-Jan-09	32	32.5	1	0.5	1.5	138.5	E S	0-2 mph	10 str	-18.1	-17.6	drift
-Jan-09	32	32.5	0	0	0	138.5	E	0-2 mph	clear	-32.4	-24.6	drift
-Jan-09	32	32.5	0	0	0	138.5	NE	2-5 mph	clear	-35.1	-24.6	drift
-Jan-09	40	39.5	2	0	2	140.5	S	2-5 mph	8 str	-16.1	-11.6	drift
0-Jan-09	40	39.5	2	0	2	142.5	S	0-12 mph	8 str	-4.8	-1.4	gusty
1-Jan-09	40	39.5	4.25	0	4.25	146.75	S	0-3	10 str	-1.9	1.4	drift
2-Jan-09	40	39.5	4	rain/sn	4	150.75	S R	0-35 mph	10 str	-2	4.7	rain/snow
3-Jan-09	40	39.5	rain/sh	0	0	150.75	S fl/sh	0-15 mph	10 str	1.6	4.3	gusty
4-Jan-09	40	39.5	sh	sh	0	150.75	S sh	5-10 mph	10 str	3.3	5.9	warm
5-Jan-09	33	32.5	0	Ō	0	150.75	ENE>S	2-15 mph	8 str/cir	-6.4	5.9	gusty
6-Jan-09	33	32.5	0	0	0	150.75	S	2-5 mph	3 str	-6.9	-2.2	drift
7-Jan-09	33	32.5	0	0	0	150.75	E	1-3 mph	6 str/cir	-8.3	7.7	drift
8-Jan-09	33	32.5	0	0	0	150.75	ESE	1-10 mph	clear	-0.1	9	gusty
9-Jan-09	33	32.5	0	0	0	150.75	E>S	1-10 mph	clear	-3.8	6	moderate
0-Jan-09	33	35	0	0	0	150.75	E	1-5 mph	8 str/cir	-3.8	4.8	Light
1-Jan-09	33	35	0	0	0	150.75	S	5-15 mph	10 str fl	0	3.6	moderate
2-Jan-09	33	35	0.5	0	0.5	151.25	E	5-15 mph	8 str	-15.3	-15.3	moderate
3-Jan-09	33	35	0	0	0	151.25	E	3-5 mph	8 str	-20.6	-16.9	light
4-Jan-09	33	35	0	0	0	151.25	Ν	3-5 mph	clear	-27.1	-18.2	Light
5-Jan-09	33	35	0	0	0	151.25	variable	1-3 mph	clear	-31.6	-16.8	light
6-Jan-09	33	35	0	0	0	151.25	Efl	1-3 mph	10 str	-22.2	-7.9	light
7-Jan-09	33	35	4.75	0	4.75	156	S fl	1-3 mph	10 str	-10.7	-3.5	light
8-Jan-09	33	35	0.25	0 0	0.25	156.25	E>S	5-20 mph	10 str	-3.3	-0.6	gusty
9-Jan-09	33	35	0.25	0	0.25	156.5	S sl/rain	1-5 mph	10 str	1	3.4	light
0-Jan-09	33	35	1	1	2	158.5	S sl/rain	10-35 mph	10 str	-3.1	-2.7	gusty
1-Jan-09	33	35	0.5	0	0.5	159	S	5-20 mph	9 str	-6.4	-2.7	gusty
-Feb-09	34	36.5	0.5	0	0.5	159	S	0-3 mph	10 alto str	-5.2	0.9	drift
-Feb-09 -Feb-09	34	36.5	0	0	0	159	S	5-15 mph	1 str	-3.2	0.9	
-Feb-09 -Feb-09	34 34	36.5	10.75	0	11.75	170.75	S S sn	5-15 mph	10 str	-3.2	0.7	mod/gusty gusty
-Feb-09 -Feb-09	40	42.5	0	0	0	170.75	S	1-5 mph	10 str	-6.4	-3.2	
-Feb-09 -Feb-09	40	42.5	2.5	0	2.5	173.5	S fog/fl	1-5 mph	10 str	-6.4 -8.2	-3.2 -2.4	light
	40 40	42.5	2.5 0.75	0	2.5 0.75		S fog/fi E>S			-8.2 -11		light
-Feb-09 -Feb-09		42.5 42.5		0 8.75	0.75	174.25		1-15 mph	9 str	-11 -0.3	1.4	light>gust
	40		4.25			187.25	S sn	5-20 mph	10 str		1.4	gusty
Feb-09	40	42.5	2.5	0	2.5	189.75	S	1-5 mph	8 str	-5.2	1	drift
-Feb-09	49	47	0.5	0	0.5	190.25	S	1-5 mph	2 str/cir	-12.7	-3.7	light
0-Feb-09	49	47	0	0	0	190.25	N	1-5 mph	clr>10 str	-21.3	-5.6	light
1-Feb-09	49	47	0	0	0	190.25	E>S	1-5 mph	3 str	-21.1	-3.2	light
2-Feb-09	49	47	0	0	0	190.25	E>S	1-5 mph	clear	-25.1	-6.7	light
3-Feb-09	49	47	0	0	0	190.25	S	1-5 mph	clear	-25.1	-7.9	light
4-Feb-09	49	47	0	0	0	190.25	S	1-5 mph	1 str	-26.6	-5.7	light
5-Feb-09	49	47	0	0	0	190.25	E	2-5 mph	2>8 str/cir	-23.2	-6.7	light
6-Feb-09	49	47	0	0	0	190.25	W	1-5 mph	1 str	-19.8	0.1	light
7-Feb-09	49	47	0	0	0	190.25	S	1-5 mph	6 str>clr	-17.2	1	light

	Snow on Gro		-								erature	
	-	Rescan Met	•	•		Accumulated				Low (7:30		
Date	Camp	Stn	Overnight	day	Snow	Snow	Wind Direction	Wind Speed	Cloud Cover	AM)	(3:30 PM)	Remarks
10 Fab 00	(in)	(in)	(in)	(in)	(in)	(in)	SE	1 E manh	10 str fl	(°C)	(°C)	linht
18-Feb-09 19-Feb-09	49 46	47 44	0	0	0	190.25	E	1-5 mph	10 str fl	-13.2	-1.5	light
20-Feb-09	46 46	44 44	1.25 0	0	1.25 0	191.5 191.5	SE	1-5 mph 1-5 mph	7 str 4 str	-12.6 -15.2	2.2 3.1	light
20-Feb-09 21-Feb-09	46 46	44	0	0	0	191.5	S fl			-15.2	-1.1	light
		44 44		0	1			1-5 mph	10 str			light
22-Feb-09	46 46	44 44	1	0	0	192.5	E fl S	5- 15 mph	10 str	-6.5	-4.2	gusty
23-Feb-09		44 42	0	0		192.5	E	1-5 mph	10>2 str	-15.1	-3.5 -7	light
24-Feb-09	44		-	-	0	192.5		1-5 mph	clear	-24		light
25-Feb-09	44	42	0	0	0	192.5	S	1-5 mph	clear	-26.7	-8.1	light
26-Feb-09	44	42 42	-	0	0 0	192.5	SW	1-5 mph	5 str	-23.4	-7.7	light
27-Feb-09	44		0	-		192.5	Wfl	1-5 mph	10 str	-14.1	-6.1	light
28-Feb-09	44	42	0.75	0	0.75	193.25	S	1-5 mph	6 str	-19.1	2.1	light
1-Mar-09	44	44.5	0	0	0	193.25	E fl	1-5 mph	10 str	-15.1	-3.2	light
2-Mar-09	44	44.5	4.25	0	4.25	197.5	S	1-5 mph	8 str	-9	1	light
3-Mar-09	44	44.5	0	0	0	197.5	NW fl	1-5 mph	10 str	-10.4	3	light
4-Mar-09	44	44.5	0.5	0	0.5	198	Efl	1-5 mph	10>1 str	-6.4	2.7	light
5-Mar-09	44	44.5	0	0	0	198	E	1-5 mph	8 str	-18.1	0.9	light
6-Mar-09	44	44.5	0	0	0	198	S fl	5-25 mph	10 str	-12	5.1	mod/gusty
7-Mar-09	44	44.5	1	0	1	199	NE	5-15 mph	7 str	-11	-5.7	gusty
8-Mar-09	44	44.5	0	0	0	199	S	1-5 mph	3 str	-20.2	-5.5	light
9-Mar-09	44	44.5	0	0	0	199	SW	0-2 mph	clear	-26.7	-5.6	drift
10-Mar-09	44	44.5	0	0	0	199	SW	1-5 mph	10 str	-17	1.1	light
11-Mar-09	44	44.5	0	0	0	199	S	1>10 mph	10 str	-14.5	1.7	drift
12-Mar-09	46	46.5	2.75	2.5	5.25	204.25	S fl	1-5 mph	10 str	-5	2.3	light
13-Mar-09	50	50	2.5	0	2.5	206.75	S fl	1-5 mph	10 str	-2.9	2.7	light
14-Mar-09	50	50	0	0	0	206.75	S	1-5 mph	10 str	-12.1	3.7	light
15-Mar-09	50	50	1	0	1	207.75	S fl	1-5 mph	10 str	-7.4	2.7	light
16-Mar-09	50	50	0.75	0	0.75	208.5	S fl	1-5 mph	10>5 str	-13	-3.9	light
17-Mar-09	52	51.5	1.75	0	1.75	210.5	S FI	0- 3 mph	7 str	-14.1	-0.3	drift
18-Mar-09	52	51.5	1.75	1	2.75	213.25	E fl	1-30 mph	10 str	-6.9	1.1	gusty
19-Mar-09	52	51.5	0	0	0	213.25	S	1-5 mph	6 str	-13.4	2	light
20-Mar-09	52	51.5	2.75	0.5	3.5	216.5	E>S fl	1-5 mph	7>10 str	-8.1	6	light
21-Mar-09	52	51.5	0	0	0	216.5	S	1-5 mph	5 str	-16.2	0.1	light
22-Mar-09	52	51.5	0.5	0	0.5	217	W	1-5 mph	9 str	-13	4	light
23-Mar-09	52	51.5	0	0	0	217	W	1-15 mph	10 str	-6.9	4	gusty
24-Mar-09	52	51.5	0.25	0	0.25	217.25	S fl	1-5 mph	10 str	-3.3	3.4	light
25-Mar-09	52	51.5	0	0	0	217.25	S	1-5 mph	10 str	-5.4	9.4	light
26-Mar-09	52	51.25	0	0	0	217.25	S fl	5-15 mph	10 str	-1	4	gusty
27-Mar-09	52	51.25	0	0	0	217.25	SW	1-5 mph	10 str	-2.5	3.5	light
28-Mar-09	52	51.25	0	0	0	217.25	SE	3-10 mph	9>10 str	-5.5	2.4	light/gusty
29-Mar-09	52	51.25	0	0	0	217.25	E	1-5 mph	clr>10 str	-13.8	0.7	light
30-Mar-09	52	51.25	0.25	0	0.25	217.5	S fl	5-15 mph	10 str	-2.6	2.7	mod/gusty
31-Mar-09	52	51.25	0	0	0	217.5	S	5-15 mph	10>3 str	-9	1.7	mod/gusty
1-Apr-09	50	49	0.25	0	0.25	217.75	S	1-5 mph	10>4 str	-7.4	8	light
2-Apr-09	50	49	0	0	0	217.75	S	5-15 mph	7 str	-13.4	1.3	mod/gusty
3-Apr-09	50	49	0	0	0	217.75	S	0-5 mph	clear	-15	5	light
4-Apr-09	50	49	0	0	0	217.75	S fl	5-10 mph	10 str	-3.1	5.7	mod/gusty
5-Apr-09	50	49	0.25	0	0.25	218	S fl	1-5 mph	10 str	-0.3	7.1	light
6-Apr-09	50	49	0	0	0	218	S	5-15 mph	9 str	-0.8	6.2	MOD/gust
7-Apr-09	49	48	0	0	0	218	S	1-5 mph	10.str	-2.2	9.8	light
8-Apr-09	48	47	0	0	0	218	S	3-15 mph	9>6 str	-2.8	8	mod
9-Apr-09	48	47	0	0	0	218	NE>S	1-10 mph	9>4 str	-9	5.7	light
10-Apr-09	48	47	0	0	0	218	SE	2>10 mph	10 str	-5	5.7	mod
11-Apr-09	48	47	0	0	0	218	S	1-10 mph	10 str	-3.6	6.9	mod/gusty
12-Apr-09	48	47	0	0	0	218	S fl	1-3 mph	8 str	-4.3	10.3	light
13-Apr-09	47	46	0	0	0	218	SE	1-5 mph	10 str	-4.5	9.1	light
14-Apr-09	46	45	0	0	0 0	218	S	1-10 mph	2 str	-4.7	6.3	light
15-Apr-09	45	44	0	0	ů 0	218	S	1-5 mph	10 str	-7.1	11.6	light
16-Apr-09	45	44	0	0	0	218	S sh	5- 10 mph	10 str	-2	9.1	mod

-	Snow on Grou										perature	
Data		Rescan Met Stn		Precipitation Over-		Accumulated Snow	Wind Direction	Wind Count	claud cause	Low (7:3		D emonder
Date	Camp		Overnight	day	Snow		Wind Direction	Wind Speed	Cloud Cover	AM)	(3:30 PM)	Remarks
7 4	(in)	(in)	(in)	(in)	(in)	(in)	<u> </u>	1.5	7	(°C)	(°C)	lt - le é
7-Apr-09	45	44	0.75	0	0.75	218.75	s	1-5 mph	7 str	-0.3	12.3	light
8-Apr-09	44	43	0.75	0	0.75	219.5	S	1-5 mph	6 str	-3.8	8.5	light
19-Apr-09	44	43	0	0	0	219.5	S fl	1-5 mph	10 str	-3.3	10.2	light
20-Apr-09	43	42	0.25	0	0.25	219.75	SE fl/sh	1-5 mph	10 str	-3.3	6.1	light
1-Apr-09	43	42	0.75	0	0.75	220.5	S	5-15 mph	3>10 str	-1.1	4.9	mod/gusty
2-Apr-09	43	42	1.75	0	1.75	222.25	E	5-20 mph	7 str	-1.1	8.2	mod/gusty
23-Apr-09	43	42	0	0	0	222.25	S	1-5 mph	6 str	-7	9.8	light
4-Apr-09	43	42	0	0	0	222.25	S fl	1-30 mph	10 str	-2.7	5.6	gusty
5-Apr-09	42	41	0	0	0	222.25	E	1-5 mph	10>3 str	-4.1	7.7	light
6-Apr-09	41	40	0	0	0	222.25	S	1-5 mph	clear	-5.5	15.2	light
7-Apr-09	40	39	0	0	0	222.25	S	1-5 mph	clear	-4.6	16.3	light
8-Apr-09	39	39	0	0	0	222.25	N	1-5 mph	3 str	-2.6	19.4	light
9-Apr-09	38	38	0	0	0	222.25	S	1-5 mph	clear	-3.6	21.1	light
0-Apr-09	37	37	0	0	0	222.25	S	1-5 mph	clr>5 str	-3.7	21.6	light
-May-09	35	35	0	0	0	222.25	S	1-5 mph	clear	-2.6	23.4	light
2-May-09	33	33	n/a	n/a	n/a	n/a	S	1-5 mph	clear	-1.6	21.5	light
-May-09	31	31	n/a	n/a	n/a	n/a	S sh	5-20 mph	10 str	-0.1	9.8	gusty
-May-09	29	29	sh/on	n/a	n/a	n/a	S	1-5 mph	10>4str/cir	1.3	16.4	light
-May-09	27	27	n/a	n/a	n/a	n/a	S	1-5 mph	clear	-4.2	20.3	light
-May-09	25	25	r/on	n/a	n/a	n/a	s	5-15 mph	10>6 str	3.8	10.7	mod
7-May-09	22	22	n/a	n/a	n/a	n/a	S	1-5 mph	10>3 str	1.1	11.4	light
-May-09 8-May-09	19	19	n/a	n/a	n/a	n/a	S	5-10 mph	8 str	1.1	8.9	mod
-May-09 -May-09	17	17	n/a	n/a	n/a	n/a	S	1-5 mph	8 str	1.1	10.4	light
0-May-09	15	15		n/a	n/a n/a	n/a	S			-3.2	13.7	
1-May-09	15	15	n/a		n/a n/a		W>E	1-5 mph	3 str 10 str	-5.2	12.5	light
			n/a	n/a		n/a		1-5 mph				light
2-May-09	12	12	n/a	n/a	n/a	n/a	E	1-5 mph	5 cir/ str	-2.3	11.2	light
3-May-09	0-11	16	n/a	n/a	n/a	n/a	E>S	5-10 mph	clear	-3.4	11.3	mod
4-May-09	n/a	12.5	n/a	n/a	n/a	n/a	W	5-15 mph	2 str	-1	12.1	mod
5-May-09	n/a	11.5	n/a	n/a	n/a	n/a	S	5-10 mph	8 str/cir	-1	9.6	mod
6-May-09	n/a	0-9.5	sl/r	n/a	n/a	n/a	S	1-5 mph	10 str	0.3	12.5	light
7-May-09	n/a	0-9.5	sl	n/a	0.75	n/a	NE sn/r	5-10 mph	10 str	0.8	7.1	mod
8-May-09	patches grd	0-9	n/a	n/a	n/a	n/a	NE	5-10 mph	10 str	-0.3	12.2	mod
9-May-09	n/a	0-8	n/a	n/a	n/a	n/a	S	1-5 mph	3 str	-1.3	15.1	light
20-May-09	n/a	0-6	n/a	n/a	n/a	n/a	S	5-15 mph	10 str	0.3	14.8	mod
21-May-09	patches sn	0-3	n/a	n/a	n/a	n/a	SW	1-5 mph	3 str/cum	0.3	15.1	light
22-May-09	patches sn	n/a	n/a	n/a	n/a	n/a	S	1-5 mph	1 str	-1	20.1	light
23-May-09	main airstrip clear	n/a	n/a	n/a	n/a	n/a	SW	5-15 mph	4 str	2.3	14.7	mod
24-May-09	n/a	n/a	n/a	n/a	n/a	n/a	E	1-5 mph	9>1 str	1.4	20.4	light
25-May-09	n/a	n/a	sh	n/a	n/a	n/a	S	1-5 mph	10 str	2.3	20.3	light
6-May-09	n/a	n/a	r	n/a	n/a	n/a	S	5-20 mph	10 str	4	14.3	mod
7-May-09	n/a	n/a	n/a	n/a	n/a	n/a	S	5-20 mph	10 str	2.9	14.6	mod
28-May-09	n/a	n/a	n/a	n/a	n/a	n/a	S	1-5 mph	5 str	2.3	16.7	light
9-May-09	n/a	n/a	r	r	n/a	n/a	S	5-20 mph	10 str	3.7	10.5	mod
0-May-09	n/a	n/a	n/a	n/a	n/a	n/a	W	5-30 mph	9>5 str	4.3	11.7	mod
30-May-09 31-May-09	n/a	n/a	n/a	n/a	n/a	n/a	S	1-5 mph	clear	2.3	22.7	light
-Jun-09	n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a	S	1-5 mph	4 str/cir	2.5	22.7 n/a	
-5011-09	11/ d	n/d	11/d	ıı/d	11/ d		s ie 2, 2009 to July 2, 2009.**	i-5 mpn	4 Stl/Cll	1.1	i i/ d	light
	m/-		و ا	m /-					0	-	21.5	
-Jul-09	n/a	n/a	sh	n/a	n/a	n/a	light S		8 cum	5	21.5	
-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lit S		1 cir	7	25.4	
-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite S>E mod		2 cir>4cum	8.6	27.6	
-Jul-09	n/a	n/a	sh	n/a	n/a	n/a	calm>lite W		7 str/cir>8 cum	9.3	27.3	
-Jul-09	n/a	n/a	r	n/a	n/a	n/a	lite W>mod E pr		7 str>7cum/str	6.4	26.2	
-Jul-09	n/a	n/a	r	n/a	n/a	n/a	lite W> lite N pr	n	1 str>10 str/cum pm	7.3	22.6	
-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite >mod S		clear>4 str>10 str	7.4	26.4	
-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite S>mod S		haze>8 str	12.2	25.6	
0-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	mod S		cl>8 cum/str	12	26.4	
1-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite W>mod W	,	5 str/cir>cl	11.2	26.4	
2-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite S>lite E		1 cum> 8 cum	7.4	28.2	
3-Jul-09	n/a	n/a	r	n/a	n/a	n/a	calm>lite N		10 str>8cum>4 cum	11.4	24.5	
4-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>mod W		7 str>7>10cum	10	24	

	Snow on G	round								Temp	erature	
		Rescan Met	Precipitation	Precipitation Over-	New	Accumulated				Low (7:30	High	
Date	Camp	Stn	Overnight	day	Snow	Snow	Wind Direction	Wind Speed	Cloud Cover	AM)	(3:30 PM)	Remarks
	(in)	(in)	(in)	(in)	(in)	(in)				(°C)	(°C)	
5-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W gust high		cl>5 str	11.4	19.2	
6-Jul-09	n/a	n/a	sh	n/a	n/a	n/a	mod W		10 str>7 str	11	20.7	
7-Jul-09	n/a	n/a	sh	sh	n/a	n/a	calm		10 str	10.5	17.2	
8-Jul-09	n/a	n/a	n/a	sh	n/a	n/a	calm>mod W am		10 str>10/cum>4cum	9.1	19.9	
9-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W		2 str>8 cum/str	8.7	21.1	
0-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	liteW		10 str	10.8	16.6	
1-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite>mod W		9 str cir>10 str	9.1	19.9	
2-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W		10 str	11.1	17.2	
3-Jul-09	n/a	n/a	n/a	sh	n/a	n/a	calm>lite S		10.str	10	17.7	
4-Jul-09	n/a	n/a	sh	n/a	n/a	n/a	mod W		8>10 str	12	19.2	
5-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite S>mod S		3 cir/cum>1 str	8	24.2	
6-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite S>mod S		clear>2str	6.2	27	
7-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>mod W		3>1 str	10.2	28.8	
8-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	lite W>E		clear	8.2	33.1	
9-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>lite >mod W		clear	11	34	
0-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>lite>mod W		clear	13.5	33.5	
1-Jul-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>mod W		clear	13.7	n/a	
-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>mod W		9 str/cir>clear	9.9	26.2	
-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>mod W		clear	9	23.6	
-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>mod E		8>10 str	8.7	22	
-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	calm>lite W		clear>1 cum	8	30.3	
-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	calm> mod W		clear	6.5	24.3	
-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	lite> mod W		5 str/cir	9.2	24.3	
-Aug-09	n/a	n/a	n/a	sh	n/a	n/a	mod W		10 str	14.2	20.2	
-Aug-09	n/a	n/a	sh	sh	n/a	n/a	calm>mod W		10 str>4 cum	12.7	22.7	
-Aug-09	n/a	n/a	n/a	light sh	n/a	n/a	lite W		10 str	9.2	16.2	
0-Aug-09	n/a	n/a	r	n/a	n/a	n/a	calm> mod W		9>10 str	6	16.2	
1-Aug-09	n/a	n/a	sh	sh	n/a	n/a	lite>mod W		10 str	8	14.7	
2-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	lite N> mod W		9 str>5 cum;2 str	6.7	18.9	
3-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	lite>mod W;gust high		1 str>5 cum	4.2	19.2	
4-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W; gust high		8 str-cir>10str	6	16.2	
5-Aug-09	n/a	n/a	n/a	sh	n/a	n/a	mod W; gust high		8>10 str>8str	10.4	18.5	
6-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W gusty		10 str	12.4	20.3	
7-Aug-09	n/a	n/a	n/a	sh	n/a	n/a	mod W		10 str	12.4	18.2	
8-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W gust high		6 str-cir>3str>10str	11.4	20	
9-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	lite>mod W		clear>9str-cir	7.1	23.8	
0-Aug-09	n/a	n/a	sh	rain (afternoon)	n/a	n/a	lite W		10 str	10.9	18.2	
1-Aug-09	n/a	n/a	rain	sh (afternoon)	n/a	n/a	lite>mod W gusty		9 str-cir>10 cum/str	11	14.7	
2-Aug-09	n/a	n/a	sh	sh (afternoon)	n/a	n/a	calm/fog>mod W		10 str	6.8	15.4	
3-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	mod W; gust high		10 str	8.1	12.4	
1-Aug-09	n/a	n/a	n/a	sh	n/a	n/a	lite W		10 str	4	11.6	
5-Aug-09	n/a	n/a	sh	rain (afternoon	n/a	n/a	lite W		10 str	5.2	12.3	
5-Aug-09	n/a	n/a	sh	n/a	n/a	n/a	calm>lite W		9 str	4.1	20.2	
7-Aug-09	n/a	n/a	sh	r	n/a	n/a	calm		10 str	5.1	13.3	
3-Aug-09	n/a	n/a	r	n/a	n/a	n/a	lite W		9 str	5.7	18.4	
-Aug-09	n/a	n/a	r	n/a	n/a	n/a	lite>mod W		10>4 str>10 str	11.7	20	
)-Aug-09	n/a	n/a	r	n/a	n/a	n/a	lite W		4>7 str	6.5	16.2	
I-Aug-09	n/a	n/a	n/a	n/a	n/a	n/a	calm		10 str	6.5	n/a	

Appendix 3

Dustfall Laboratory Results

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

- -

	ANALYTICAL REPORT		
RESCAN ENVIRON	MENTAL SERVICES		
ATTN: SOREN JEN		Reported On:	12-SEP-07 04:30 PM
SIXTH FLOOR 1111 WEST HASTIN VANCOUVER BC V		·	Revision: 1
Lab Work Order #:	L541139	Date Receive	d: 13-AUG-07
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	SHAFT AIR QUALITY #830-2 12 34 56 78		
Corc Numbers.	12 34 30 70		
Other Information:			
Comments:			
	Timothy Guy Crowther General Manager, Vancouver		
	For any questions about this report please contact your Acc	ount Manager:	
	Amber Springer		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L541139 CONTD.... PAGE 2 of 4 12-SEP-07 16:28

	Sample ID Description Sampled Date Sampled Time Client ID	L541139-1 09-AUG-07 14:30 FD-2	L541139-2 09-AUG-07 14:30 FD-3	L541139-3 TRAVEL BLANK
Grouping	Analyte			
DUSTFALL				
Particulates	Total Dustfall (mg/m2.day)	0.65	0.41	<0.10
	Total Insoluble Dustfall (mg/m2.day)	0.61	0.36	<0.10
	Total Soluble Dustfall (mg/m2.day)	<0.10	<0.10	<0.10
Total Metals	Aluminum (Al)-Total (mg/dm2.day)	0.0054	0.0010	<0.0010
	Antimony (Sb)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Barium (Ba)-Total (mg/dm2.day)	0.000094	<0.000050	<0.000050
	Beryllium (Be)-Total (mg/dm2.day)	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/dm2.day)	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/dm2.day)	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (mg/dm2.day)	<0.000050	<0.000050	<0.000050
	Calcium (Ca)-Total (mg/dm2.day)	<0.050	<0.050	<0.050
	Chromium (Cr)-Total (mg/dm2.day)	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/dm2.day)	0.00024	<0.00010	0.00019
	Iron (Fe)-Total (mg/dm2.day)	<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/dm2.day)	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/dm2.day)	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/dm2.day)	<0.10	<0.10	<0.10
	Manganese (Mn)-Total (mg/dm2.day)	0.000360	0.000091	<0.000050
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000020	<0.0000020	<0.0000050
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.000050	<0.000050	<0.000050
	Nickel (Ni)-Total (mg/dm2.day)	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/dm2.day)	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/dm2.day)	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/dm2.day)	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Total (mg/dm2.day)	<0.050	<0.050	<0.050
	Silver (Ag)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/dm2.day)	<2.0	<2.0	<2.0
	Strontium (Sr)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Thallium (TI)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/dm2.day)	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010
	Vanadium (V)-Total (mg/dm2.day)	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/dm2.day)	<0.0010	<0.0010	<0.0010

L541139 CONTD.... PAGE 3 of 4 12-SEP-07 16:28

	Sample ID Description Sampled Date Sampled Time Client ID	L541139-1 09-AUG-07 14:30 FD-2	L541139-2 09-AUG-07 14:30 FD-3	L541139-3 TRAVEL BLANK	
Grouping	Analyte				
WATER					
Anions and	Sulfate (SO4) (mg/L)	<0.002	0.002	<0.002	
Nutrients	Nitrate (as N) (mg/L)				
	Nitrate (as N) (mg/L)	0.00017	0.00034	<0.00004	

Reference Information

L541139 CONTD.... PAGE 4 of 4 12-SEP-07 16:28

Methods Listed (if applicable):

Methods Listed (if ap	plicable):			
ALS Test Code	Matrix	Test Description		Analytical Method Reference(Based On)
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatograph	Ý	APHA 4110 "Determination of Anions by IC
	Inorganic Ani			ns by Ion Chromatography" and EPA Method method include: bromide, chloride, fluoride,
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatograph	у	APHA 4110 "Determination of Anions by IC
	Inorganic Ani			ns by Ion Chromatography" and EPA Method method include: bromide, chloride, fluoride,
DUSTFALLS-COM-DM2		Combined dustfalls-Total, solu		BCMOE "DUSTFALLS"
✓A Dustfall analysis is carr	ied out in acco	ordance with procedures published	d by the B.C. Ministry of Enviror	ment Laboratory.
HG-DUST(DM2-CVAFS		Total Mercury in Dustfalls by C		EPA 245.7
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evaluating S	Vater and Wastewater" published by the solid Waste" SW-846 published by the United scence spectrophotometry (EPA Method
MET-DUST(DM2)-ICP-V	A Dustfall	Total Metals in Dustfalls by IC	POES	EPA 6010B
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evaluating S	Vater and Wastewater" published by the colid Waste" SW-846 published by the United a - optical emission spectrophotometry (EPA
MET-DUST(DM2)-MS-V	A Dustfall	Total Metals in Dustfalls by IC	PMS	EPA 6020A
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evaluating S	Vater and Wastewater" published by the solid Waste" SW-846 published by the United a - mass spectrometry (EPA Method 6020A).
				r internationally accepted methodologies. ical analysis for that test. Refer to the list below:
Laboratory Definition	Code La	boratory Location	Laboratory Definition Code	e Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Invironme	antal Division	(A)	LS)		www.alsglobal.com									Page	1	of	1	
Report to:				Report F	ormat / Distribution	n		Ser	vice	Requ	ieste	d;					_	_
Company	Rescan Environmen	tal Services		Y Stan	dard Other			~	Reg	ular	Servi	ce (I	Default)					_
Contact	Soren Jensen			Y PDF	✓ Excel	Fax		11	Rus	h Se	rvice	(2-3	Days)					_
Address:	6th floor - 1111 Wes	Hastings Str	reet, Vancouer, BC	Email 1:	sjensen@rescan c	om		T.	Prio	rity S	ervic	e (1	Day or A	SAP)		_	_	_
	All the second			Email 2:				Emergency Service (<1 Day / Wke:)				::id) - (Conla	ct AL	ŝ			
Phone	604 689 9460	Fax	604 687 4277									An	alysis R	equest	 ;			
Invoice To	: V Same as R	вроп				Indicate Bottle	es Filtered / Preserved (F/P) -	-					1	1		17		_
Company:				Client / I	Project Information											1		
Contact:				Job #:	Shaft Air Quality	#830-2		1	I									
Address:				PO/AFE:				1									5	ũ
Sample				Legal Sit	e Description:			1			_						alc	ģ
Phone:	1 Alexandre	Fax:		Quote #;						<u></u>	Dustfall		1				Ē	100
	Work Order # ab use only)			ALS Contact		Sampler (Initials)	SRJ/AL	Metais	Total Dustfall	Soluble Dustfall	le Dus	e				ous?	Contaminated?	Mumber of Container
Sample	The		dentification		Date	Time	Sample Type	l le	otal D	pluble	Insoluble	Sulphate	Nitrale		1	Hazardous?	Highly	adm.
#	FD-1	Description wi	Il appear on the report)	-	dd-mmm-yy	hh:mm	(Select from drop-down list)	F	Ĕ	Ň	2	ທີ	ž		-	Ξ	Ī	Ż
	FD-2					41.33	Other	- <u>+-×</u> -	F×-	×	×	×	-*		+-		-	
	FD-3				09-Aug-07	14:30	Other	X	X	X	X	Х	×	\vdash		+		2
	ED 4	_	and the second se		<u>94-HUGUI</u>	14:30	Other	X	×	×	X	×	X		\rightarrow	$\left \right $		2
	FD-5				N STATE OF STATE		Other		F*	- X -	- X -	<u> </u>	~		+		-	-
	FD.6						Other	+÷		× I		<u> </u>	×	==	+	╞╡	=	-
- DATE	FD.7										· · ·	<u> </u>	X	╞╪╴	≠⇒	╞╾╡		_
-	50.8							<u> </u>				÷	÷	==	\mp			=
	Travel Blank						Other	-	F.	Ň	- * -	- <u>*</u> -	<u> </u>	╞═╪═	+=-	\square	_	-
	THUT UT DIGITIN				-	-		×	X	X	X	×	×	╞╾┠╸	<u> </u>	\vdash	$ \neg$	会
	Gui	delines / Reg	ulations				Special Instruction	s/Ha	zard	ous	Deta	ils			1			Ż
						200-10		_										_
		By the use o					 Please fill in this form Conditions as specified 											
Relinquished		Date & Time;	10-Aug-07 16:00 hrs	Received		Date & Time	Service as specified				S		Condition	(lab use c	only)			
Relinquished	Ming-	Date & Time:	10.00 ms	By: Received	·	Date & Time:		+		erature A			dition? Y /					
By:				Ву:	Anna G		Aug 13/07 10:0	il 1	6	୫ ଁ	C		provided di		,			

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	ANALYTICAL REPORT		
RESCAN ENVIRONI	MENTAL SERVICES		
ATTN: SOREN JEN	ISEN	Reported On:	09-NOV-07 07:21 PM
SIXTH FLOOR			Revision: 3
1111 WEST HASTIN VANCOUVER BC			
VANCOUVER BC	70E 2J3		
	1 507000		. 47.007.07
Lab Work Order #:	L567323	Date Receive	ed: 17-OCT-07
Project P.O. #:			
Job Reference:	SHAFT AIR QUALITY #830-2		
Legal Site Desc:			
CofC Numbers:			
Other Information:			
Comments:			
Comments.			
	/		
	-4->		
	Joyce Chow General Manager, Vancouver		
	For any questions about this report please contact your Ac	count Manager:	
	GLENYSS WEEKS	-	

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L567323 CONTD PAGE 2 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

L567323-1

Sample ID

09-NOV-07 19:20

L567323-5

L567323-4

L567323-3

L567323-2

	Description	L00/323-1	L307323-2	L007323-3	L00/323-4	L507323-5
	Description Sampled Date	09-OCT-07	09-OCT-07	09-OCT-07	09-OCT-07	09-OCT-07
	Sampled Time Client ID	FD-1	FD-2	FD-3	FD-4	FD-5
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	0.24	0.23	0.22	0.12	0.11
	Total Insoluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10	<0.10	<0.10
	Total Soluble Dustfall (mg/dm2.day)	0.15	0.21	0.13	0.11	<0.10
Total Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000051	0.000317	0.000077	0.000167	
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000010	<0.0000090	<0.0000010	<0.0000050	
	Arsenic (As)-Total (mg/dm2.day)	<0.0000010	<0.0000090	<0.0000010	<0.0000050	
	Barium (Ba)-Total (mg/dm2.day)	0.0000118	0.0000243	0.0000203	0.0000115	
	Beryllium (Be)-Total (mg/dm2.day)	<0.000050	<0.000050	<0.0000060	<0.000020	
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000050	<0.000050	<0.000060	<0.000020	
	Boron (B)-Total (mg/dm2.day)	<0.00010	<0.000090	<0.00010	<0.000050	
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000050	<0.0000050	<0.0000060	<0.0000020	
	Calcium (Ca)-Total (mg/dm2.day)	0.00205	0.0106	0.00574	0.00105	
	Chromium (Cr)-Total (mg/dm2.day)	<0.000050	0.0000081	<0.000060	<0.000020	
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000010	0.00000123	<0.0000010	<0.0000050	
	Copper (Cu)-Total (mg/dm2.day)	0.000423	0.000282	0.0000588	0.000433	
	Iron (Fe)-Total (mg/dm2.day)	<0.00030	0.00057	<0.00040	0.00016	
	Lead (Pb)-Total (mg/dm2.day)	0.0000078	0.00000161	0.0000082	0.00000154	
	Lithium (Li)-Total (mg/dm2.day)	<0.000050	<0.000050	<0.000060	<0.000020	
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0010	<0.00090	<0.0010	<0.00050	
	Manganese (Mn)-Total (mg/dm2.day)	0.0000461	0.0000810	0.0000126	0.0000261	
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000050	<0.0000050	<0.0000060	<0.0000020	
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000050	0.00000111	<0.0000060	0.0000034	
	Nickel (Ni)-Total (mg/dm2.day)	<0.000050	0.0000129	<0.000060	0.0000029	
	Phosphorus (P)-Total (mg/dm2.day)	<0.0030	<0.0030	<0.0040	<0.0010	
	Potassium (K)-Total (mg/dm2.day)	<0.020	<0.020	<0.020	<0.010	
	Selenium (Se)-Total (mg/dm2.day)	<0.000010	<0.000090	<0.000010	<0.000050	
	Silicon (Si)-Total (mg/dm2.day)	<0.00050	0.00077	<0.00060	0.00037	
	Silver (Ag)-Total (mg/dm2.day)	<0.0000010	0.000000539	0.00000020	<0.00000050	
	Sodium (Na)-Total (mg/dm2.day)	<0.020	<0.020	<0.020	<0.010	
	Strontium (Sr)-Total (mg/dm2.day)	0.0000051	0.0000145	0.0000093	0.00000335	
	Thallium (TI)-Total (mg/dm2.day)	<0.0000010	<0.0000090	<0.000010	<0.0000050	
	Tin (Sn)-Total (mg/dm2.day)	<0.0000010	0.00000154	<0.000010	0.00000054	
	Titanium (Ti)-Total (mg/dm2.day)	<0.00010	<0.000090	<0.00010	<0.000050	
	Uranium (U)-Total (mg/dm2.day)	<0.0000010	<0.00000090	<0.0000010	<0.00000050	
	Vanadium (V)-Total (mg/dm2.day)	<0.000010	<0.0000090	<0.000010	<0.0000050	
	Zinc (Zn)-Total (mg/dm2.day)	0.000037	0.0000785	0.000049	0.0000688	

L567323 CONTD.... PAGE 3 of 6

	FAGE	3 01 0
Т	09-NOV	-07 19:20

	Sample ID Description	L567323-6	L567323-7
	Sampled Date Sampled Time	09-OCT-07	09-OCT-07
	Client ID	FD-6	FD-8
Grouping	Analyte		
DUSTFALL			
Particulates	Total Dustfall (mg/dm2.day)	<0.10	<0.10
	Total Insoluble Dustfall (mg/dm2.day)	<0.10	<0.10
	Total Soluble Dustfall (mg/dm2.day)	<0.10	<0.10
Total Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000565	0.000101
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000020	<0.000030
	Arsenic (As)-Total (mg/dm2.day)	<0.0000020	<0.000030
	Barium (Ba)-Total (mg/dm2.day)	0.0000441	0.0000169
	Beryllium (Be)-Total (mg/dm2.day)	<0.000010	<0.000010
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000010	<0.000010
	Boron (B)-Total (mg/dm2.day)	<0.00020	<0.00030
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000010	<0.0000010
	Calcium (Ca)-Total (mg/dm2.day)	0.0016	0.0063
	Chromium (Cr)-Total (mg/dm2.day)	<0.000010	<0.000010
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000020	<0.0000030
	Copper (Cu)-Total (mg/dm2.day)	0.000170	0.0000603
	Iron (Fe)-Total (mg/dm2.day)	<0.00070	<0.00080
	Lead (Pb)-Total (mg/dm2.day)	<0.0000010	0.0000046
	Lithium (Li)-Total (mg/dm2.day)	<0.00010	<0.00010
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0020	<0.0030
	Manganese (Mn)-Total (mg/dm2.day)	0.0000439	0.0000328
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000010	<0.0000010
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000010	<0.0000010
	Nickel (Ni)-Total (mg/dm2.day)	0.000013	<0.000010
	Phosphorus (P)-Total (mg/dm2.day)	<0.0070	<0.0080
	Potassium (K)-Total (mg/dm2.day)	<0.050	<0.000
	Selenium (Se)-Total (mg/dm2.day)	<0.00020	<0.00030
	Silicon (Si)-Total (mg/dm2.day)	0.0019	<0.000030
	Silver (Ag)-Total (mg/dm2.day)	<0.0000020	<0.0000030
	Sodium (Na)-Total (mg/dm2.day)	<0.050	<0.050
	Strontium (Sr)-Total (mg/dm2.day)	0.0000075	0.0000108
	Thallium (TI)-Total (mg/dm2.day)	<0.0000020	<0.0000030
	Tin (Sn)-Total (mg/dm2.day)	<0.0000020	<0.000030
	Titanium (Ti)-Total (mg/dm2.day)	<0.00020	<0.00030
	Uranium (U)-Total (mg/dm2.day)	<0.0000020	<0.0000030
	Vanadium (V)-Total (mg/dm2.day)	<0.000020	<0.000030
	Zinc (Zn)-Total (mg/dm2.day)	0.000225	0.000036

L567323 CONTD.... PAGE 4 of 6 09-NOV-07 19:20

		Sample ID Description	L567323-1	L567323-2	L567323-3	L567323-4	L567323-5
		Sampled Date	09-OCT-07	09-OCT-07	09-OCT-07	09-OCT-07	09-OCT-07
		Sampled Time Client ID	FD-1	FD-2	FD-3	FD-4	FD-5
Grouping	Analyte						
WATER							
Anions and	Sulfate (SO4) (mg/m2.day)		<0.01493	<0.01493	<0.01493	<0.01493	<0.01493
Nutrients	Nitrate (as N) (mg/m2.day)		<0.0001493	0.0004791	<0.0001493	0.0003755	0.0004183

L567323 CONTD.... PAGE 5 of 6 09-NOV-07 19:20

		Sample ID Description	L567323-6	L567323-7		
		Sampled Date	09-OCT-07	09-OCT-07		
		Sampled Time Client ID	FD-6	FD-8		
Grouping	Analyte					
WATER						
Anions and Nutrients	Sulfate (SO4) (mg/m2.day)		<0.01493	<0.01493		
Nutrients	Nitrate (as N) (mg/m2.day)		0.0017837	0.0007548		

Reference Information

L567323 CONTD.... PAGE 6 of 6 09-NOV-07 19:20

Methods Listed (if applicable):

Methods Listed (if ap	plicable):			
ALS Test Code	Matrix	Test Description		Analytical Method Reference(Based On)
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography		APHA 4110 "Determination of Anions by IC
	Inorganic Ani			ns by Ion Chromatography" and EPA Method method include: bromide, chloride, fluoride,
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	/	APHA 4110 "Determination of Anions by IC
	Inorganic Ani			ns by Ion Chromatography" and EPA Method method include: bromide, chloride, fluoride,
DUSTFALLS-COM-DM	2- Dustfall	Combined dustfalls-Total, solu	ble, insol	BCMOE "DUSTFALLS"
VA Dustfall analysis is carr	ied out in acco	ordance with procedures published	by the B.C. Ministry of Environ	ment Laboratory.
HG-DUST(DM2-CVAFS		Total Mercury in Dustfalls by C		EPA 245.7
American Fublic Realth	ASSOCIATION, a	and with procedures adapted norm	Test methods for Evaluating 3	/ater and Wastewater" published by the olid Waste" SW-846 published by the United cence spectrophotometry (EPA Method
MET-DUST(DM2)-ICP-\	A Dustfall	Total Metals in Dustfalls by ICF	POES	EPA 6010B
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evaluating S	/ater and Wastewater" published by the olid Waste" SW-846 published by the United - optical emission spectrophotometry (EPA
MET-DUST(DM2)-MS-V	A Dustfall	Total Metals in Dustfalls by ICF	PMS	EPA 6020A
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evaluating S	/ater and Wastewater" published by the olid Waste" SW-846 published by the United - mass spectrometry (EPA Method 6020A).
				internationally accepted methodologies. cal analysis for that test. Refer to the list below:
Laboratory Definition	Code La	boratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS La		Chain of Custody / Analytical Request Form			COC # 09102007					<u> </u>						
Environme	Intal Division (ALS)		Canada Toll Free: 1 800 668 9878									Pa	ge		of _	_1
Report to:		Report Fo	mat / Distributio	n		Serv	ice F	Requ	este	d:			_			
Company:	Rescan Environmental Services	👻 Standa	ard : Other			Regular Service (Default)										
Contact	Saren Jensen	V PDF	✓ Excel	Fax		i i	Rush	s Sen	vice	(2-3	Days	}				
Address:	6lh floor - 1111 West Hastings Street, Vancouer, BC	Email 1:	sjensen@rescan.c			;	Prior	ity Se	ervic	e (1	Dayo	or ASA	P)	_		
		Email 2:					Eme	rgeno	cy Se	ervic	e (<1	Day / \	Vken	J) - Cc	intac	t AL
Phone:	604 689 9460 Fax: 604 687 4277									Ar	nalysi	s Req	Jest	_	_	_
Invoice To:	Same as Report			Indicate Bottle	s. Filtered / Preserved (F/P)										Т	Т
Company:		Client / P	roject Information	:				\neg								
Contact:		Job #:	Shaft Air Quality	#830-2		1										
Address:		PO/AFE:				1	ļ									5
Sample		Legal Site	Description:			1										atec
Phone:	Fax:	Quote #:	Quote #:			1		E	Dustfall							ц.
	Work Order # LS67323	ALS Contact:	SRJ/AL			Tolal Metals	Dustfall	Solubie Dustfall	le Du:	e					Hazardous?	Contaminated?
Sample	Sample Identification		Date	Time	Sample Type			ğ	Insoluble	Sulphat	Nitrate				zaro	Highly
#	(This description will appear on the rep	ort)	dd-mmm-yy	hh:mm	(Select from drop-down list)	힌	Total	Sol	lus	Sul	Ē				Ha	Ē
	FD-1		09-Oct-07		Other	X	Х	Х	Х	Х	X			\square		
	FD-2		09-Oct-07		Other	X	×	X	X	Х	X					
	FD-3		09-Oct-07		Other	X	Х	X	х	Х	X					
	FD-4		09-Oct-07		Other	X	Х	Х	X	Х	X			\square		
	FD-5		09-Oct-07		Other		Х	X	Х	Х	X					\neg
	FD-6		09-Oct-07		Other	X	Х	X	х	Х	X		·			
	FD-8		09-Oct-07		Other	X	Х	X	x	Х	X					
													Т			
1																
	Guidelines / Regulations				Special Instructions	: / Haz	zardo	ous (Deta	ils					_	
	Failure to con	nplete all nortion	s of this form ma	v delav anaivs	s. Please fill in this form	LEG				_		_			_	
	By the use of this form the use	acknowledges		the Terms and	Conditions as specified					1000	-			_		
Relin qui shed By:	Date & Time.	Received	Mar.R	Date & Time	AC+ 1+ 11:49	108	Taught	erature	_		-	ition (lab				
ay. Relinquished	Date & Time:	By. Received				1	Sur's	analure			Samples Bettered in Good Condition Y /N (if no provided details)					

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	ANALYTICAL REPORT		
RESCAN ENVIRON	MENTAL SERVICES		
ATTN: SOREN JEN	ISEN	Reported On:	09-OCT-07 04:12 PM
SIXTH FLOOR 1111 WEST HASTIN VANCOUVER BC V			Revision: 2
Lab Work Order #:	L551874	Doto Boooiya	ed: 10-SEP-07
Lab Work Order #.	L331074	Date Receive	
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	SCHAFT CREEK 830-2 SCHAFT CREEK AIR QUALITY		
Other Information:			
Comments:			
	Timothy Guy Crowther General Manager, Vancouver		
	For any questions about this report please contact your Acc	ount Manager:	
	GLENYSS WEEKS		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L551874 CONTD.... PAGE 2 of 4

ALS LABORATORY GROUP ANALYTICAL REPORT

09-OCT-07 16:08

	Sample ID Description Sampled Date	L551874-1	L551874-2	L551874-3	L551874-4	L551874-5
	Sampled Date Sampled Time	01-SEP-07	01-SEP-07	01-SEP-07	01-SEP-07	01-SEP-07
	Client ID	FD-1	FD-2	FD-3	FD-4	FD-5
Brouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	0.75	0.94	0.22	0.29	0.23
	Total Insoluble Dustfall (mg/dm2.day)	0.63	0.59	0.16	0.19	<0.10
	Total Soluble Dustfall (mg/dm2.day)	0.12	0.34	<0.10	0.10	0.14
Total Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000640	0.000217	0.000259	0.000361	0.000146
	Antimony (Sb)-Total (mg/dm2.day)	<0.000020	<0.000020	<0.000020	<0.000020	<0.0000010
	Arsenic (As)-Total (mg/dm2.day)	<0.000020	<0.000020	<0.000020	0.0000024	0.0000017
	Barium (Ba)-Total (mg/dm2.day)	0.0000445	0.0000245	0.0000598	0.0000313	0.0000307
	Beryllium (Be)-Total (mg/dm2.day)	<0.0000090	<0.0000080	<0.000010	<0.0000080	<0.0000070
	Bismuth (Bi)-Total (mg/dm2.day)	<0.0000090	<0.0000080	<0.000010	<0.0000080	<0.0000070
	Boron (B)-Total (mg/dm2.day)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00010
	Cadmium (Cd)-Total (mg/dm2.day)	<0.00000090	<0.0000080	<0.0000010	<0.0000080	<0.0000070
	Calcium (Ca)-Total (mg/dm2.day)	0.00907	0.00370	0.0037	0.0446	0.0137
	Chromium (Cr)-Total (mg/dm2.day)	<0.0000090	<0.000080	<0.000010	<0.000080	<0.000070
	Cobalt (Co)-Total (mg/dm2.day)	<0.000020	<0.000020	<0.000020	<0.000020	<0.0000010
	Copper (Cu)-Total (mg/dm2.day)	0.00632	0.000375	0.000280	0.0130	0.00749
	Iron (Fe)-Total (mg/dm2.day)	<0.00050	<0.00050	<0.00070	<0.00050	<0.00040
	Lead (Pb)-Total (mg/dm2.day)	0.00000145	0.00000192	0.0000016	0.00000134	0.00000159
	Lithium (Li)-Total (mg/dm2.day)	<0.000090	<0.000080	<0.00010	<0.000080	<0.000070
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0020	<0.0020	<0.0020	0.0045	<0.0010
	Manganese (Mn)-Total (mg/dm2.day)	0.000111	0.0000937	0.0000628	0.0000914	0.0000845
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000090	<0.0000080	<0.000010	<0.0000080	<0.00000070
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000090	<0.0000080	<0.000010	0.0000175	0.00000091
	Nickel (Ni)-Total (mg/dm2.day)	<0.000090	<0.000080	<0.000010	<0.000080	<0.0000070
	Phosphorus (P)-Total (mg/dm2.day)	<0.0050	<0.0050	<0.0070	<0.0050	<0.0040
	Potassium (K)-Total (mg/dm2.day)	<0.040	<0.030	<0.050	<0.030	<0.030
	Selenium (Se)-Total (mg/dm2.day)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000010
	Silicon (Si)-Total (mg/dm2.day)	0.00111	<0.00080	<0.0010	0.00089	<0.00070
	Silver (Ag)-Total (mg/dm2.day)	<0.0000020	<0.0000020	<0.0000020	<0.0000020	<0.0000010
	Sodium (Na)-Total (mg/dm2.day)	<0.040	<0.030	<0.050	<0.030	<0.030
	Strontium (Sr)-Total (mg/dm2.day)	0.0000240	0.0000124	0.0000333	0.0000403	0.0000159
	Thallium (TI)-Total (mg/dm2.day)	<0.0000020	<0.0000020	<0.0000020	<0.0000020	<0.0000010
	Tin (Sn)-Total (mg/dm2.day)	<0.0000020	<0.0000020	<0.000020	<0.000020	0.0000025
	Titanium (Ti)-Total (mg/dm2.day)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00010
	Uranium (U)-Total (mg/dm2.day)	<0.00000020	<0.00000020	<0.0000020	0.00000028	<0.00000010
	Vanadium (V)-Total (mg/dm2.day)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000010
	Zinc (Zn)-Total (mg/dm2.day)	0.000103	0.000038	0.000089	0.000067	0.000076

L551874 CONTD.... PAGE 3 of 4

ALS LABORATORY GROUP ANALYTICAL REPORT

	TAOL	0.01	
т	09-OCT	-07 16	:08
•			

	Sample ID Description	L551874-6	L551874-7	L551874-8	
	Sampled Date Sampled Time	01-SEP-07	01-SEP-07	01-SEP-07	
Grouping	Client ID Analyte	FD-6	FD-7	FD-8	
	, analyte				
		0.00	0.04	0.07	
Particulates	Total Dustfall (mg/dm2.day)	0.26	0.24	0.87	
	Total Insoluble Dustfall (mg/dm2.day)	0.12	0.14	0.70	
	Total Soluble Dustfall (mg/dm2.day)	0.13	<0.10	0.16	
otal Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000082	0.000083	0.000322	
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000020	<0.0000010	<0.0000020	
	Arsenic (As)-Total (mg/dm2.day)	<0.0000020	<0.0000010	0.0000024	
	Barium (Ba)-Total (mg/dm2.day)	0.0000119	0.0000205	0.000299	
	Beryllium (Be)-Total (mg/dm2.day)	<0.000080	<0.000070	<0.000090	
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000080	<0.000070	<0.000090	
	Boron (B)-Total (mg/dm2.day)	<0.00020	<0.00010	<0.00020	
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000080	<0.0000070	<0.0000090	
	Calcium (Ca)-Total (mg/dm2.day)	0.00093	0.00136	0.0136	
	Chromium (Cr)-Total (mg/dm2.day)	<0.000080	<0.000070	<0.000090	
	Cobalt (Co)-Total (mg/dm2.day)	<0.000020	<0.000010	<0.000020	
	Copper (Cu)-Total (mg/dm2.day)	0.00790	0.00748	0.00820	
	Iron (Fe)-Total (mg/dm2.day)	<0.00050	<0.00040	0.00123	
	Lead (Pb)-Total (mg/dm2.day)	<0.0000080	0.00000144	0.0000213	
	Lithium (Li)-Total (mg/dm2.day)	<0.000080	<0.000070	<0.000090	
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0020	<0.0010	0.0028	
	Manganese (Mn)-Total (mg/dm2.day)	0.0000502	0.0000489	0.000249	
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000080	<0.0000070	<0.0000090	
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000080	<0.0000070	<0.0000090	
	Nickel (Ni)-Total (mg/dm2.day)	<0.000080	<0.000070	0.0000124	
	Phosphorus (P)-Total (mg/dm2.day)	<0.0050	<0.0040	<0.0050	
	Potassium (K)-Total (mg/dm2.day)	<0.030	<0.030	<0.030	
	Selenium (Se)-Total (mg/dm2.day)	<0.000020	<0.000010	<0.000020	
	Silicon (Si)-Total (mg/dm2.day)	<0.00080	<0.00070	<0.00090	
	Silver (Ag)-Total (mg/dm2.day)	<0.0000020	<0.0000010	<0.0000020	
	Sodium (Na)-Total (mg/dm2.day)	<0.030	<0.030	<0.030	
	Strontium (Sr)-Total (mg/dm2.day)	0.0000028	0.0000038	0.0000285	
	Thallium (TI)-Total (mg/dm2.day)	<0.000020	<0.0000010	<0.000020	
	Tin (Sn)-Total (mg/dm2.day)	<0.000020	<0.0000010	<0.000020	
	Titanium (Ti)-Total (mg/dm2.day)	<0.00020	<0.00010	<0.00020	
	Uranium (U)-Total (mg/dm2.day)	<0.0000020	<0.00000010	<0.0000020	
	Vanadium (V)-Total (mg/dm2.day)	<0.000020	<0.000010	<0.000020	
	Zinc (Zn)-Total (mg/dm2.day)	0.000043	0.000072	0.000125	

L551874 CONTD.... PAGE 4 of 4 09-OCT-07 16:08

	Matrix	Test Description	Analytical Method Reference(Based On)
DUSTFALLS-COM-DM2-		Combined dustfalls-Total, soluble, insol	BCMOE "DUSTFALLS"
Dustfall analysis is carried	l out in acco	rdance with procedures published by the B.	C. Ministry of Environment Laboratory.
	Dustfall	Total Mercury in Dustfalls by CVAFS	EPA 245.7
American Fublic Health As	sociation, a	nu with procedures adapted north intest wet	the Examination of Water and Wastewater" published by the hods for Evaluating Solid Waste" SW-846 published by the United vapour atomic fluorescence spectrophotometry (EPA Method
MET-DUST(DM2)-ICP-VA	Dustfall	Total Metals in Dustfalls by ICPOES	EPA 6010B
This analysis is carried out American Public Health As	t using processociation, a	edures adapted from "Standard Methods for nd with procedures adapted from "Test Met	EPA 6010B the Examination of Water and Wastewater" published by the thods for Evaluating Solid Waste" SW-846 published by the United tively coupled plasma - optical emission spectrophotometry (EPA
This analysis is carried out American Public Health As States Environmental Prot Method 6010B).	t using processociation, a ection Agen	edures adapted from "Standard Methods for nd with procedures adapted from "Test Met	the Examination of Water and Wastewater" published by the hods for Evaluating Solid Waste" SW-846 published by the United
This analysis is carried out American Public Health As States Environmental Prot Method 6010B). MET-DUST(DM2)-MS-VA This analysis is carried out American Public Health As	t using processociation, a sociation Agen Dustfall t using processociation, a	edures adapted from "Standard Methods for nd with procedures adapted from "Test Met cy (EPA). Instrumental analysis is by induct Total Metals in Dustfalls by ICPMS edures adapted from "Standard Methods for nd with procedures adapted from "Test Met	the Examination of Water and Wastewater" published by the hods for Evaluating Solid Waste" SW-846 published by the United tively coupled plasma - optical emission spectrophotometry (EPA
This analysis is carried out American Public Health As States Environmental Prot Method 6010B). MET-DUST(DM2)-MS-VA This analysis is carried out American Public Health As States Environmental Prot ** Laboratory Methods emp	t using processociation, a ection Agen Dustfall t using processociation, a ection Agen	edures adapted from "Standard Methods for nd with procedures adapted from "Test Met cy (EPA). Instrumental analysis is by induct Total Metals in Dustfalls by ICPMS edures adapted from "Standard Methods for nd with procedures adapted from "Test Met cy (EPA). Instrumental analysis is by induct v in-house procedures, which are generally b	The Examination of Water and Wastewater" published by the thods for Evaluating Solid Waste" SW-846 published by the United tively coupled plasma - optical emission spectrophotometry (EPA EPA 6020A The Examination of Water and Wastewater" published by the the thods for Evaluating Solid Waste" SW-846 published by the United tively coupled plasma - mass spectrometry (EPA Method 6020A).
This analysis is carried out American Public Health As States Environmental Prot Method 6010B). MET-DUST(DM2)-MS-VA This analysis is carried out American Public Health As States Environmental Prot ** Laboratory Methods emp	t using processociation, a ection Agen Dustfall t using processociation, a ection Agen oloyed follow above ALS	edures adapted from "Standard Methods for nd with procedures adapted from "Test Met cy (EPA). Instrumental analysis is by induct Total Metals in Dustfalls by ICPMS edures adapted from "Standard Methods for nd with procedures adapted from "Test Met cy (EPA). Instrumental analysis is by induct win-house procedures, which are generally by Test Code column indicate the laboratory th	the Examination of Water and Wastewater" published by the thods for Evaluating Solid Waste" SW-846 published by the United tively coupled plasma - optical emission spectrophotometry (EPA EPA 6020A The Examination of Water and Wastewater" published by the thods for Evaluating Solid Waste" SW-846 published by the United tively coupled plasma - mass spectrometry (EPA Method 6020A).

mg/kg (units) - unit of concentration based on mass, parts per million mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ICSIGTU

1988 Triumph Street, Vancouver, BC Canada VSL 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 504-253-6700

#2 -21 Highfield Circle SE, Calgary, AB, Canada, T2G 5N6 Tel: 403-214-5431, Toll Free: 1-866-722-6231, Fax: 403-214-5430

#2 - 8620 100th Street, Fort St. John, BC Canada V1J 3W9 Tel; 250-785-8281 Fax: 250-785-8286

www.alsenviro.com

2

CHAIN	OF	CUST	ODY	FORM

PAGE 1 OF

SEN	REPO	<u>RT TO:</u>										_								
СОМ	PANY:	Rescar	Environmenta	al Services, Ltd		·		_		SIS RE	QUE	STE	D:				.—			
ADD	RESS:	6th Flo	or, 1111 West	Hastings Street				ulat	tfall									11		
CITY		Vancou	ıver	PROV BC		POSTAL CODE	V6E 2J3	soluble particulat	(Total Dustfall							the second	1	{ }		
TEL:		(604) 6	89-9460	FAX: (604)	687-4277		S. Jensen	le p	otal	11	-		110	1		100				
PRO.	JECT NA		D NO.:	830-2 Schaft Cree	ek Air Quality	SAMPLER:	O. Dennis	dub												
ດນວ	TE NO.:			PO NO.:		ALS CONTACT:	Amber Springer		Sulat			1						11		
DED		DMAT.		COPY 🗹 EM	AIL - ADDRESS:	sjensen@resca	an.com	culat	artic		5				6.3					
REPU	JKT FUI	RIVIAT	FAX			OTHER;		particulate,	ole p		Metals									
W	0#		SAMPLE IDEN	TIFICATION	DATE / TIME YYYY-MM-DD	TIME	MATRIX	Total p	insoluble particulate		Total									ample specific lue dales, elc)
Π	-	FD-1			2007-09-01		dustfall	X			x									
l I	-	FD-2			2007-09-01		dustfall	x			X									
	1	FD-3			2007-09-01		dustfall	X			X						Diffest			1944 - 24 H
FOR LAB USE ONLY	F	-D-4			2007-09-01		dustfall	x		T	X						Γ			
ы Ш	- 1																			And in a
) B	- 1											-			-		1			
2	-+											20		1000			-			
<u>ଜ</u> ା		-						-	1000		-	+					-		1.1	
	-+							-	-			-+	Press City	in action	-		-	++		
	-										~				1		-		-	
					L												↓			
TURN		ND D	ROUTINE		H SPECIFY DATE:		(surcharge may a	ipply)				HED B	Y:	╞╺	ATE:	Sept-07-2007		EIVED BY		109/10
<u> </u>	INVOIC	E TO:			ERENT FROM REPORT	T (accuide detaile b				S. Fre					IME [.]	11:30		D_	TIME	
	CEFOR					(provide details of	erow)			RELIN	QUIS	HED B	Y:		ATE:		REC	EIVED BY	DATE: TIME	+
	AL INS								_	} —	_	_		,		R LAB USE O				
					, including cyanide	s and all metals.			-			Intact		Samp	le Tei	mperature:	°C	Cooling		
Pleae	sena II	IVOICE	to Rescan Acc	งขุดแทฐ						Ye	s <u> </u>	_ کلار	_N/A	Froze	n?	Yes No	22	Icepa	cksloe	eNone

SEND REPORT TO:

1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel 604-253-4188 Toll Free: 1-800-665-0243 Fax. 604-253-6700

#2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286

www.alsenviro.com

CHAIN OF CUSTODY FORM L551874

CHAIN OF CUSTODT FOR	11
----------------------	----

2 PAGE 2 OF

						<u> </u>												_
CON	PANY:	Resca	an Environmenta	al Services, L	,td	,		AN/	ALYS	SIS RE	QUE	STED:						
ADD	RESS:	6th Fic	oor, <u>1111 West</u>	Hastings Stre	eet			ulat	stfall									
CITY	ť:	Vancou	uver	PROV: B	30	POSTAL CODE:	V6E 2J3	particula	Dustfal									
TEL.		(604) f	689-9460	FAX: ((604) 687-4277	CONTACT	S. Jensen		(Total									
PRO	JECT		ND NO :	830-2 Schaf	ft Creek Air Quality	SAMPLER	. O. Dennis	soluble										
ວນວ	OTE NO.	J		PO NO.:		ALS CONTACT	Amber Springer		ulate									ļ
				COPY	EMAIL - ADDRESS:	sjensen@resca		ulate	particulate		10							
REP	ORT FC	ORMAT:	1	⊡ EXC				particulate,			Total Metals							I
Ŵ	NO #	T	FAX						insoluble							N	OTES (and	mple specific
			SAMPLE IDEN	TIFICATION	YYYY-MM-DD	TIME	MATRIX	Total	insc		Tota							niple specific le dates, elc.)
		FD-5			2007-09-01		dustfall	X			x							
		FD-6			2007-09-01		dustfall	x			x							
		FD-7		Lin II. St	2007-09-01	attender.	dustfall	x			×							
FOR LAB USE ONLY		FD-8	1.0		2007-09-01		dustfall	x			×							
JSE											T							
ABL	\square									\square	T							
R	\square																	- 544
Ĕ	$ \neg \uparrow$							-			1						_	-
	\square										+							
	$ \neg $										-							Contraction of the
TURN	N AROU			C	RUSH SPECIFY DATE:		(surcharge may ap	_L	L			HED BY:		Sept-07-2007		/ED BY:	PATE	09110
	UIRED								1	S. Free			TIME:	11:30	11.00		TIME	1029
SEND		ICE TO:			DIFFERENT FROM REPORT	(provide details br	elow)					HED BY:	DATE:		RECEIV	ED BY:	DATE:	
	DICE FOI			Y	PDF FAX								TIME;				TIME:	
		STRUCTI												OR LAB USE C				
			rith lowest detect to Rescan Acc		ssible, including cyanides	s and all metals.			-			Intact?		mperature:		ooling Meth		
r iççiş	2 90110	INVOICE	to neatan Aco	ounnig.					/	Yes	1 -12	2 N 6N/A	Frozen?	_YesNo		_/Cepacks	JIce	None

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

RESCAN ENVIRONI ATTN : RYAN BRAN SIXTH FLOOR		ANALYTICAL RI		28-JUL-08 02:25 PM
1111 WEST HASTIN VANCOUVER BC V				Revision: 1
Lab Work Order #:	L654174		Date Receiv	/ed: 10-JUL-08
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	912-1 SCHAFT CREEK C069986, C069988			
Other Information:				
Comments:				
		S WEEKS		
	Account N			

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L654174 CONTD.... PAGE 2 of 5 28-JUL-08 14:23

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L654174-1 29-JUN-08 07:45 FD1 (MAY 27 -	L654174-2 29-JUN-08 08:10 FD2 (MAY 27 -	L654174-3 29-JUN-08 08:30 FD3 (MAY 27 -	L654174-4 29-JUN-08 10:05 FD4 (MAY 27 -	L654174-5 29-JUN-08 10:10 FD5 (MAY 27 -
Grouping	Analyte	JUN 29)				
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	1.06	0.77	0.33	0.31	0.50
	Total Insoluble Dustfall (mg/dm2.day)	0.96	0.70	0.31	0.27	0.43
	Total Soluble Dustfall (mg/dm2.day)	0.11	<0.10	<0.10	<0.10	<0.10
Anions and Nutrients	Nitrate (as N) (mg/dm2.day) Sulfate (SO4) (mg/dm2.day)	0.00029	0.00051	0.00014	0.00020	0.00037
Matala		<0.0090	<0.0070	<0.0070	<0.0070	< 0.0080
Metals	Aluminum (AI)-Total (mg/dm2.day)	0.000526	0.000697	0.000415	0.000105	0.000093
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010	<0.0000010	<0.0000010
	Arsenic (As)-Total (mg/dm2.day)	<0.0000010	0.0000018	<0.0000010	<0.0000010	<0.0000010
	Barium (Ba)-Total (mg/dm2.day)	0.000152	0.0000630	0.0000317	0.0000157	0.0000150
	Beryllium (Be)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060	<0.000060	<0.0000060
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000060	<0.000060	<0.000060	<0.000060	<0.0000060
	Boron (B)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060	<0.0000060	<0.0000060
	Calcium (Ca)-Total (mg/dm2.day)	0.0235	0.00809	0.00686	0.00226	0.00350
	Chromium (Cr)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060	<0.000060	<0.0000060
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010	<0.0000010	<0.0000010
	Copper (Cu)-Total (mg/dm2.day)	0.000109	0.0000647	0.0000593	0.0000612	0.0000680
	Iron (Fe)-Total (mg/dm2.day)	0.00072	0.00108	0.00048	<0.00040	<0.00040
	Lead (Pb)-Total (mg/dm2.day)	0.00000119	0.00000294	0.0000081	<0.0000060	<0.0000060
	Lithium (Li)-Total (mg/dm2.day)	<0.000060	<0.000060	<0.000060	<0.000060	<0.000060
	Magnesium (Mg)-Total (mg/dm2.day)	0.0012	<0.0010	<0.0010	<0.0010	<0.0010
	Manganese (Mn)-Total (mg/dm2.day)	0.0000956	0.0000704	0.0000288	0.0000153	0.0000111
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060	<0.0000060	<0.0000060
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000060	<0.0000060	0.00000122	<0.0000060	<0.0000060
	Nickel (Ni)-Total (mg/dm2.day)	<0.000060	<0.000060	<0.000060	<0.000060	<0.000060
	Phosphorus (P)-Total (mg/dm2.day)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Potassium (K)-Total (mg/dm2.day)	<0.020	<0.020	<0.020	<0.020	<0.020
	Selenium (Se)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Silicon (Si)-Total (mg/dm2.day)	0.00115	0.00128	0.00065	< 0.00060	<0.00060
	Silver (Ag)-Total (mg/dm2.day)	<0.0000010	0.0000032	<0.0000010	<0.0000010	<0.0000010
	Sodium (Na)-Total (mg/dm2.day)	<0.020	<0.020	<0.020	<0.020	<0.020
	Strontium (Sr)-Total (mg/dm2.day)	0.0000466	0.0000175	0.0000129	0.0000043	0.0000089
	Thallium (TI)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010	<0.0000010	<0.0000010
	Tin (Sn)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.000010	<0.000010	<0.000010
	Titanium (Ti)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010
	Uranium (U)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010	<0.0000010	<0.0000010
	Vanadium (V)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Zinc (Zn)-Total (mg/dm2.day)	0.000077	0.000050	0.000025	0.000029	<0.000010

L654174 CONTD.... PAGE 3 of 5 28-JUL-08 14:23

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID	L654174-6	L654174-7	L654174-8
	Description			
	Sampled Date	29-JUN-08	29-JUN-08	29-JUN-08
	Sampled Time Client ID	10:15 FD6 (MAY 27 -	10:30 FD7 (MAY 27 -	10:45 FD8 (MAY 27 -
Grouping	Analyte	JÙN 29)	JÙN 29)	JÙN 29)
DUSTFALL				
Particulates	Total Dustfall (mg/dm2.day)	0.14	<0.10	0.22
	Total Insoluble Dustfall (mg/dm2.day)	<0.10	<0.10	0.15
	Total Soluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10
Anions and Nutrients	Nitrate (as N) (mg/dm2.day)	0.00053	0.00040	0.00049
	Sulfate (SO4) (mg/dm2.day)	<0.0080	<0.0060	<0.0060
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000188	0.000147	0.000228
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.000010
	Arsenic (As)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010
	Barium (Ba)-Total (mg/dm2.day)	0.0000130	0.00000753	0.0000324
	Beryllium (Be)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060
	Bismuth (Bi)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060
	Boron (B)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060
	Calcium (Ca)-Total (mg/dm2.day)	0.00141	0.00123	0.00380
	Chromium (Cr)-Total (mg/dm2.day)	<0.000060	<0.000060	<0.000060
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010
	Copper (Cu)-Total (mg/dm2.day)	0.0000917	0.000102	0.0000824
	Iron (Fe)-Total (mg/dm2.day)	<0.00040	<0.00040	0.00058
	Lead (Pb)-Total (mg/dm2.day)	0.00000152	0.0000066	0.00000070
	Lithium (Li)-Total (mg/dm2.day)	<0.000060	<0.000060	<0.000060
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0010	<0.0010	<0.0010
	Manganese (Mn)-Total (mg/dm2.day)	0.0000459	0.0000276	0.0000771
	Mercury (Hg)-Total (mg/dm2.day)	<0.00000060	<0.0000060	<0.0000060
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060
	Nickel (Ni)-Total (mg/dm2.day)	<0.0000060	<0.0000060	<0.0000060
	Phosphorus (P)-Total (mg/dm2.day)	<0.0040	<0.0040	<0.0040
	Potassium (K)-Total (mg/dm2.day)	<0.020	<0.020	<0.020
	Selenium (Se)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010
	Silicon (Si)-Total (mg/dm2.day)	<0.00060	<0.00060	<0.00060
	Silver (Ag)-Total (mg/dm2.day)	<0.00000010	<0.00000010	0.00000017
	Sodium (Na)-Total (mg/dm2.day)	<0.020	<0.020	<0.020
	Strontium (Sr)-Total (mg/dm2.day)	0.0000035	0.0000030	0.000078
	Thallium (TI)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010
	Tin (Sn)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010
	Titanium (Ti)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Uranium (U)-Total (mg/dm2.day)	<0.00000010	<0.00000010	<0.0000010
	Vanadium (V)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010
	Zinc (Zn)-Total (mg/dm2.day)	0.000036	0.000017	0.000016

L654174 CONTD.... PAGE 4 of 5 28-JUL-08 14:23

ALS Test Code	Matrix	Test Description		Analytical Method Reference(Based	On)
ANIONS-DUSTNO3-IC-	VA Dustfall	Dustfall nitrate by Ion Chromate	ography	APHA 4110 "Determination of Anions	by IC
The nitrate analysis is c	arried out usin	ordance with procedures published g procedures adapted from APHA anic Anions by Ion Chromatograph	Method 4110 "Determin	Environment Laboratory. hation of Anions by Ion Chromatography" and I	EPA
ANIONS-DUSTSO4-IC-	A Dustfall	Dustfall sulphate by lon Chrom	atography	APHA 4110 "Determination of Anions	by IC
The sulphate analysis is	carried out us	ordance with procedures published sing procedures adapted from APH anic Anions by Ion Chromatograph	IA Method 4110 "Detern	Environment Laboratory. nination of Anions by Ion Chromatography" an	d EPA
DUSTFALLS-COM-DM2		Combined dustfalls-Total, solut		BCMOE "DUSTFALLS"	
VA Dustfall analysis is carri	ed out in acco	rdance with procedures published	by the B.C. Ministry of E	Invironment Laboratory.	
American Fublic Realth	out using proc Association, a	and with procedures adapted norm	ethods for the Examinati Test Methods for Evalu	EPA 245.7 ion of Water and Wastewater" published by the lating Solid Waste" SW-846 published by the fluorescence spectrophotometry (EPA Method	Jiiiteu
MET-DUST(DM2)-ICP-V	A Dustfall	Total Metals in Dustfalls by ICP	OES	EPA 6010B	
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evalu	ion of Water and Wastewater" published by the lating Solid Waste" SW-846 published by the I plasma - optical emission spectrophotometry (Jnited
MET-DUST(DM2)-MS-V	A Dustfall	Total Metals in Dustfalls by ICF	MS	EPA 6020A	
American Public Health	Association, a	and with procedures adapted from	"Test Methods for Evalu	ion of Water and Wastewater" published by the lating Solid Waste" SW-846 published by the I plasma - mass spectrometry (EPA Method 60)	Jnited
				onally or internationally accepted methodologie analytical analysis for that test. Refer to the l	
Laboratory Definition	Code Lal	boratory Location	Laboratory Definitio	n Code Laboratory Location	

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)	ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
---	---------------	--------	------------------	---------------------------------------

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

coc#C069988

CANADA TOLL FREE 1-800-668-9878

Page 1 of 2

Environmental Division (ALS))	www	.alsenviro.co	m				1			肥富的	14	e of the	(T)	
REPORT TO:	REPO	RT FORMAT / DISTRIE	BUTION	7 . A	1.11	SERV		EQUES	TED				1.294		
COMPANY: RESCAN ENVIRONMENTAL	STAN	DARD V O	THER	Al. P		REGL	JLAR S	SERVIC	E (DEFA	ULT)	6.00		21. Mar 19		
CONTACT: RYAN BRANTLEY	PDF	EXCEL C	USTOM	FAX		RUSH	SER	VICE (2-	-3 DAYS)	1.15	A Link			128 - 1	
ADDRESS: 6th Floor, 1111 W. Hastings	EMAIL	1: Thomas Thomas	Hey@re	scan.com	10.0	PRIO	RITY	SERVIC	E (1 DAY	or ASA	P)	1.06	9		19
Vancouver, BC	EMAIL					EMER	RGENO	CY SER	VICE (<1	DAY /	WEEKE	END) -	CONTAC	T ALS	3
PHONE: 604 - 689-9460								1.2.3	ANALY	SIS RE	QUEST	r		199 V	
INVOICE TO: SAME AS REPORT ?	INDICA	TE BOTTLES: FILTERED	PRESERVED (F/	P) $\rightarrow \rightarrow \rightarrow$	\mathbb{V}		\wedge	N	N	N	V				11
COMPANY:	CLIEN	T / PROJECT INFORM	ATION:					1					124		
CONTACT:	JOB #	912-1			12.5			310			100	1	a state	0 3	RS
ADDRESS:	PO /A	FE:		a for the set	12	2				1			1	ATE	AINE
	Legal	Site Description: Sc	haft Cr	eek	with	12	2					1.00		MIN	INU
PHONE: FAX:	QUOT	E #:	1997		15	Meta	3	H	1.20	14		1	S	NTA	CO
Lab Work Order # 1 654174	ERC	C- Angel	SAMPLER	fb	A	-	2	ğ		- Mi			HAZARDOUS	HIGHLY CONTAMINATED	NUMBER OF CONTAINERS
(lab use only) SAMPLE IDENTIFICATION		1	(Initials):	4	ā	ET.	1	H.					ZAR	F	ABE
# (This description will appear on the rep	port)	DATE	TIME	SAMPLE TYPE	0	10	5	Z			1000		HAZ	D H	DZ.
FDI TM		27 200 200	1130/745	Dustfall		1	~								T
FDI TP	1.4.24	in ec	1130/745		1		110.00		29	- K-1	1.8		1		1
FD2 TM	1.0	4. 4.	1400/810		-		~	1							1
FD2 TP		h ic	1400/810	u	V	Ť	-	1		1		100			1
FD3 TM	132	4 4	13:20/830	i ii	1×	1	1	1		60			1.3 -	11	1
ED3 TP	10	n ii	1320/830	and the second se	11			-	200				20 - 5		1
FD4 TM		4 4	1620/1005	4	Y	1	1	1	-					11	1
FOH TP		ч н	4620/1005		1.	+ +	-	i alter	13	- 204				+	4
		4 H			V	V	1	/		1	+ +			+	+
EDS TM		4 11	1649 1010		1	-	~+	-		-	+		+	+-	1
		4 11	1645/1010	PECIAL INSTRU	IV	LIC (1147	4000		TAILS				1	17
GUIDELINES / REGULATIONS		A Charles and the second second	3	PECIAL INSTRU	GHU	I GN	HAZ	ARDU	US DE	TAILS	<u> </u>		1.4.3	19.000	
			AL ROOM S											1.8	in s
		ortions of this for													
By the use of this form the user acknowled RELINQUISHED BY: , DATE & TIME:	dges an		Terms and	Conditions as s	pecif	ied o	n the		Se pag					ppy.	-
Ruan Brantley 521/2 0830			11	127710) T	EMPER	ATURE						DITION ?	ES/	ho
RELINQUISHED BY: DATE & TIME:	RECEIV	ED BY: 0	$\frac{1}{2}$	DATE & THME	1	19		(If n	o provide	details)				0	
DESER				ILL		1	1		-	1	d.	244		11/1	6
REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND S	SAMPLIN	GINFORMATION	WHITE - F	REPORT COPY, PIN	K - FIL	E COP	Y, YE	LLOW -	CLIENT	COPY			GE	NF14.0	00

ALS Laboratory Group

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

Environmental Division (ALS	5)	S E.S.	www.	alsenviro.co	<u>m</u>			1		14:00		12		-date	-192	128	841	
REPORT TO:	REPO	ORT FORMAT	T / DISTRIB	UTION	2	10	SERV	ICE F	REQU	ESTE	D				1			
COMPANY: RESCAN ENVIDONMENTAL	STAN	DARD	OT	HER	Mr.	2.1	REG	ULAR	SER	VICE	DEFA	ULT)						
CONTACT: RYAN BRANTLEY	PDF_	V_ EXCE		USTOM	FAX	2.2	RUS	H SEF	RVICE	(2-3	DAYS)	in i					27	
ADDRESS: 1111. W. Hackings St.	EMAIL	1: rba	antley	a resca	n.com	1.00	PRIC	RITY	SER	VICE (1 DAY	or AS	SAP)		132	112	1.9	
Uncawer, BC	EMAIL	. 2:	0		ang.		EME	RGEN	ICY S	ERVI	CE (<1	DAY	/ WEE	KEND)	- CON	TACT	ALS	
PHONE 604-689-9460 FAX:	1	31		All I	·		2.	1.	13	A	NALY	SIS R	REQUE	ŝT				
INVOICE TO: SAME AS REPORT ?	INDICA	TE BOTTLES:	FILTERED / I	PRESERVED (F/	$P) \rightarrow \rightarrow \rightarrow$		\land	\triangleleft	\bigtriangleup	1	\wedge	1		V			62.1	JA
COMPANY:	CLIEN	NT / PROJEC	T INFORMA	ATION:										1.5		-1-		-7
CONTACT:	JOB #	= 912 -	-		The second se				148				1472	- 191		20	03	RS
ADDRESS:	PO /A	FE:			1512	2	-					3	196.	1000		Ś.	ATE	AINE
	Legal	Site Descript	tion: Sch	natt G	rek	Dutte	P		-			4		1 -1		0	CONTAMINATED	CONTAINERS
PHONE: FAX:	QUOT	TE #:				3	meta	N	(0							S	NTA	
Lab Work Order #	1996		1.58	SAMPLER	1B	14		ak	Trate	-	E E S	1	13		10	DO	00	RO
(lab use only) Sample SAMPLE IDENTIFICATION # (This description will appear on the r	eport)	D	ATE	(Initials): TIME	SAMPLE TYPE	0 4	120	Alla	417	24				(all		HAZARDOUS	HIGHLY	NUMBER OF
	eporty	27 May	129 Jun	e 1530/1015		HE	F		7		-		-	-		-	-	
FD6 TM	100	11	1 2008				-	V	V	-			+	-		-+	-+	-
FD6 TP	1	-	1	1510/1015		~			-	-	-	-		101		+	-	-
FD7 TM		4	1, "	1.00			~	-	-	-				+		-		1
FD7 TP	1.1	u	129 200	1510/1030		1	_	-	-	-	_	+	+			-+	-	1
FP8 TM	1 2 14/2	27 may	1 2008	1435/1045			V	~	1			-	-		1.3	1	-+	1
AS TP	11.25	4	/ "	H35/1045	-	V		_	-	-	_		-			_		1
	の時間	and and a								_	_	1	_					1
	19.20	1						- 2		-				1				1
Service They are an and the service of the service	1. 16. 1	2			Section 1			34.3						100	1			1
State of the State of the	i di ali		1 Star	1200				18.1			15	1				19		1
GUIDELINES / REGULATIONS				SI	PECIAL INSTRU	CTIO	NS /	HAZ	ARI	DOU	S DE	TAIL	S		24-3	519		
				a de la composición de la comp	Sec. Sec.			-	2.4		17						1.100	
Eailure to com	lete all n	ortions of	f this form	n may delay	analysis. Plea	en fil	lint	hic f	orm	LEG	IRI	-	100	-		- 10	10	
By the use of this form the user asknowl	adaaa ar												the w	hite r	epor	t cop	v.	
ReLINQUISHED BY: Plan Brantley Date & time: Date & time: Date & time: Date & time: Date & time: Date & time:	RECEIV	ED BY:	11	10.69	DATE & TIME		10.00	1000	SA	MPLE	CON	DITIO	N (lab	use o	nly)	7	1	
RELINQUISHED BY: DATE & TIME:	PEOPE	1	17	6	0/10	TE	MPER	RATUR			ES RE		D IN G	DOD CC	NDITIC	NXX	5	10
RELINQUISHED BY: DATE & TIME:	RECEIV	ED BY:			DATE & THE		10	1		(A
REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND	SAMPLIN	IG INFORMA	TION	WHITE - R	EPORT COPY, PINT	t- FIL	ECO	Y. YE	ELLO	W - CI	IENT	COPY	Y	-		GEN	F14.00	0

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Cer	tificate of Analysis		
COPPER FOX META		-		02-NOV-09 11:44 (MT)
ATTN: SHANE URE	Ν		Version:	FINAL REV. 2
1330, 1100 MELVILL	ESTREET			
VANCOUVER BC V	6E 4A6			
Lab Work Order #:	L667230		Date Receive	ed: 11-AUG-08
Project P.O. #:				
Job Reference:	912-1			
Legal Site Desc: CofC Numbers:	A010060, A010061			
Other Information:	· · · · · · , · · · · · ·			
Other mormation.				
unchan	iber 8/08- Volume filtered data has bee ged. Please contact ALS for further inf 9 - File re-sent.	n revised for Anions and Particulates	data on all sample	es. Metals data remains
	Glenyss Weeks Technical Sales Re	epresentative		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L667230 CONTD.... PAGE 2 of 5

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE 2 of 5 02-NOV-09 13:16

	Sample ID Description	L667230-1	L667230-2	L667230-3	L667230-4	L667230-5
	Sampled Date Sampled Time	02-AUG-08	02-AUG-08	02-AUG-08	02-AUG-08	02-AUG-08
	Client ID	DF-6	DF-7	DF-8	DF-1	DF-2
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	0.17	0.19	0.14	2.50	1.15
	Total Insoluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10	2.43	1.09
	Total Soluble Dustfall (mg/dm2.day)	<0.10	0.13	<0.10	<0.10	<0.10
Anions and Nutrients	Nitrate (as N) (mg/dm2.day)	<0.000080	0.000608	0.000620	0.000650	0.000663
	Sulfate (SO4) (mg/dm2.day)	<0.0080	<0.0090	0.0031	<0.0030	<0.0030
Metals	Aluminum (AI)-Total (mg/dm2.day)	0.000134	0.000087	0.000837	0.00696	0.0115
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000010	<0.0000020	<0.0000010	<0.0000010	<0.000010
	Arsenic (As)-Total (mg/dm2.day)	0.0000015	<0.0000020	<0.0000010	0.0000026	0.0000073
	Barium (Ba)-Total (mg/dm2.day)	0.00000994	0.00000754	0.0000321	0.0000957	0.000113
	Beryllium (Be)-Total (mg/dm2.day)	<0.0000060	<0.0000090	<0.0000060	<0.0000050	<0.0000050
	Bismuth (Bi)-Total (mg/dm2.day)	<0.0000060	<0.0000090	<0.0000060	<0.0000050	<0.0000050
	Boron (B)-Total (mg/dm2.day)	<0.00010	<0.00020	<0.00010	<0.00010	<0.00010
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000060	<0.0000090	<0.0000060	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/dm2.day)	0.00131	0.00109	0.00366	0.0167	0.0121
	Chromium (Cr)-Total (mg/dm2.day)	<0.0000060	<0.0000090	<0.0000060	0.0000117	0.0000369
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000010	0.0000051	<0.0000010	0.0000051	0.0000116
	Copper (Cu)-Total (mg/dm2.day)	0.00405	0.00391	0.00109	0.000863	0.00306
	Iron (Fe)-Total (mg/dm2.day)	<0.00030	<0.00050	0.00065	0.00655	0.0113
	Lead (Pb)-Total (mg/dm2.day)	0.00000079	0.0000437	0.00000131	0.00000317	0.00000572
	Lithium (Li)-Total (mg/dm2.day)	<0.000060	<0.000090	<0.000060	<0.000050	<0.000050
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0010	<0.0020	<0.0010	0.0045	0.0101
	Manganese (Mn)-Total (mg/dm2.day)	0.0000382	0.0000282	0.0000889	0.000297	0.000504
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000060	<0.0000090	<0.0000060	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/dm2.day)	0.00000234	0.00000096	0.00000075	0.0000084	0.0000087
	Nickel (Ni)-Total (mg/dm2.day)	<0.0000060	<0.000090	0.0000063	0.0000109	0.0000424
	Phosphorus (P)-Total (mg/dm2.day)	<0.0030	<0.0050	<0.0030	<0.0030	<0.0030
	Potassium (K)-Total (mg/dm2.day)	<0.020	<0.040	<0.020	<0.020	<0.020
	Selenium (Se)-Total (mg/dm2.day)	<0.000010	<0.000020	<0.000010	<0.000010	<0.000010
	Silicon (Si)-Total (mg/dm2.day)	<0.00060	<0.00090	0.00083	0.0119	0.0203
	Silver (Ag)-Total (mg/dm2.day)	<0.00000010	<0.00000020	0.00000017	<0.0000010	<0.0000010
	Sodium (Na)-Total (mg/dm2.day)	<0.020	<0.040	<0.020	<0.020	<0.020
	Strontium (Sr)-Total (mg/dm2.day)	0.0000192	0.0000052	0.000086	0.0000599	0.0000511
	Thallium (TI)-Total (mg/dm2.day)	<0.0000010	<0.0000020	<0.0000010	<0.0000010	<0.0000010
	Tin (Sn)-Total (mg/dm2.day)	<0.0000010	<0.0000020	<0.0000010	<0.0000010	<0.0000010
	Titanium (Ti)-Total (mg/dm2.day)	<0.00010	<0.00020	<0.00010	0.00047	0.00066
	Uranium (U)-Total (mg/dm2.day)	<0.00000010	<0.00000020	<0.0000010	0.0000034	0.00000024
	Vanadium (V)-Total (mg/dm2.day)	<0.000010	<0.000020	<0.000010	0.000022	0.000037
	Zinc (Zn)-Total (mg/dm2.day)	0.000052	0.000154	0.000038	0.000043	0.000067

L667230 CONTD.... PAGE 3 of 5 02-NOV-09 13:16

ALS LABORATORY GROUP ANALYTICAL REPORT

	FAGE	3	01	5
RL	02-NOV	-09	13:	16

	Sample ID Description Sampled Date	L667230-6	L667230-7	L667230-8
	Sampled Date	02-AUG-08	02-AUG-08	02-AUG-08
	Client ID	DF-3	DF-4	DF-5
Grouping	Analyte			
DUSTFALL				
Particulates	Total Dustfall (mg/dm2.day)	0.57	0.16	0.36
i uniouluico	Total Insoluble Dustfall (mg/dm2.day)	0.47	<0.10	0.31
	Total Soluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10
Anions and	Nitrate (as N) (mg/dm2.day)	0.000659	0.000512	0.000446
Nutrients	With all (as iv) (ing/uniz.day)	0.000039	0.000312	0.000440
	Sulfate (SO4) (mg/dm2.day)	<0.0040	<0.0050	<0.0030
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.00250	0.00110	0.00103
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000010	<0.000010	<0.0000010
	Arsenic (As)-Total (mg/dm2.day)	0.0000015	<0.0000010	<0.0000010
	Barium (Ba)-Total (mg/dm2.day)	0.0000390	0.0000199	0.0000173
	Beryllium (Be)-Total (mg/dm2.day)	<0.0000050	<0.0000060	<0.0000060
	Bismuth (Bi)-Total (mg/dm2.day)	<0.0000050	<0.0000060	<0.000060
	Boron (B)-Total (mg/dm2.day)	<0.00010	<0.00010	<0.00010
	Cadmium (Cd)-Total (mg/dm2.day)	<0.00000050	<0.0000060	<0.0000060
	Calcium (Ca)-Total (mg/dm2.day)	0.00537	0.00170	0.00130
	Chromium (Cr)-Total (mg/dm2.day)	<0.0000050	<0.0000060	<0.000060
	Cobalt (Co)-Total (mg/dm2.day)	0.0000021	<0.0000010	<0.0000010
	Copper (Cu)-Total (mg/dm2.day)	0.00157	0.00360	0.00203
	Iron (Fe)-Total (mg/dm2.day)	0.00241	0.00103	0.00078
	Lead (Pb)-Total (mg/dm2.day)	0.00000162	0.00000156	0.00000107
	Lithium (Li)-Total (mg/dm2.day)	<0.000050	<0.000060	<0.000060
	Magnesium (Mg)-Total (mg/dm2.day)	0.0015	<0.0010	<0.0010
	Manganese (Mn)-Total (mg/dm2.day)	0.000167	0.0000628	0.0000428
	Mercury (Hg)-Total (mg/dm2.day)	<0.00000050	<0.0000060	<0.0000060
	Molybdenum (Mo)-Total (mg/dm2.day)	0.00000583	<0.0000060	<0.0000060
	Nickel (Ni)-Total (mg/dm2.day)	0.0000073	<0.0000060	<0.0000060
	Phosphorus (P)-Total (mg/dm2.day)	<0.0030	<0.0030	<0.0030
	Potassium (K)-Total (mg/dm2.day)	<0.020	<0.020	<0.020
	Selenium (Se)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010
	Silicon (Si)-Total (mg/dm2.day)	0.00323	0.00159	0.00128
	Silver (Ag)-Total (mg/dm2.day)	<0.00000010	0.00000038	<0.00000010
	Sodium (Na)-Total (mg/dm2.day)	<0.020	<0.020	<0.020
	Strontium (Sr)-Total (mg/dm2.day)	0.0000220	0.0000070	0.0000065
	Thallium (TI)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010
	Tin (Sn)-Total (mg/dm2.day)	<0.0000010	<0.0000010	<0.0000010
	Titanium (Ti)-Total (mg/dm2.day)	0.00012	<0.00010	<0.00010
	Uranium (U)-Total (mg/dm2.day)	0.00000019	0.00000013	<0.00000010
	Vanadium (V)-Total (mg/dm2.day)	<0.000010	<0.000010	<0.000010
	Zinc (Zn)-Total (mg/dm2.day)	0.000057	0.000067	0.000027

L667230 CONTD.... PAGE 4 of 5 02-NOV-09 13:16

	x Report Remai	ks	Sample Comments	
Methods Listed (if applicable	e):			
ALS Test Code Mat	rix Test Descriptio	n	Analytical Method Reference(Based	On)
ANIONS-DUSTNO3-IC-VA Dus	tfall Dustfall Nitrate	by Ion Chromatography	BC LAB MAN PART SOLUBLE -	ANIONS
Cations by Ion Chromatography	<i>i</i> . The nitrate analysis is		'Particulate - Total' and 'Particulate - Soluble - Anio edures adapted from APHA Method 4110 "Determir s by Ion Chromatography".	
ANIONS-DUSTSO4-IC-VA Dus	tfall Dustfall Sulpha	te by lon Chromatography	BC LAB MAN PART SOLUBLE -	ANIONS
Cations by Ion Chromatography	r. The sulphate analysis		'Particulate - Total' and 'Particulate - Soluble - Anic ocedures adapted from APHA Method 4110 "Detern ions by Ion Chromatography".	
DUSTFALLS-COM-DM2- Dus	tfall Combined Dus	tfalls-Total, soluble, insol	BCMOE DUSTFALLS	
VA Dustfall analysis is carried out in	n accordance with proced	lures published by the B.C. Ministr	ry of Environment Laboratory.	
HG-DUST(DM2-CVAFS- Dus		n Dustfalls by CVAFS	EPA 245.7	
American Fublic Realth Associa	alion, and with procedure	s adapted from Test Methods for	mination of Water and Wastewater" published by th Evaluating Solid Waste" SW-846 published by the tomic fluorescence spectrophotometry (EPA Metho	United
MET-DUST(DM2)-ICP-VA Dus	tfall Total Metals in	Dustfalls by ICPOES	EPA 6010B	
American Public Health Associa	ation, and with procedure	s adapted from "Test Methods for	mination of Water and Wastewater" published by th Evaluating Solid Waste" SW-846 published by the upled plasma - optical emission spectrophotometry	United
MET-DUST(DM2)-MS-VA Dus	tfall Total Metals in	Dustfalls by ICPMS	EPA 6020A	
American Public Health Associa	ation, and with procedure	s adapted from "Test Methods for	mination of Water and Wastewater" published by th Evaluating Solid Waste" SW-846 published by the upled plasma - mass spectrometry (EPA Method 60	United
			n nationally or internationally accepted methodologie rmed analytical analysis for that test. Refer to the l	
	Laboratory Location	Laboratory De	finition Code Laboratory Location	
Laboratory Definition Code				

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

coc# A010061

Page 1 of 2.

Environmental Division (AL	S)	www.a	alsenviro.co	m				Search Anna State	5.5%	
REPORT TO: Rogan Brantlen	REPO	RT FORMAT / DISTRIBU	TION		SE	RVICE REQ	UESTED	1		
COMPANY: Descan	STANE	DARD OTH	ER		RE	GULAR SEP	RVICE (DEFAUL			
CONTACT: Ryan Brantlen	PDF_	EXCEL CUS		FAX	RU	SH SERVIC	E (2-3 DAYS)		1415.43	
	ALL EMAIL	1:	0000		PR	IORITY SEP	RVICE (1 DAY or	ASAP)		
Vancomer, BC, V6223	C3 EMAIL	2.			EM	ERGENCY	SERVICE (<1 D/	AY / WEEKEND) - C	CONTACT	ALS
PHONE 604 689 9460 FAX:			1. 1. 1	CONTRACTOR NO			ANALYSI	S REQUEST		
INVOICE TO: SAME AS REPORT? YES / NO	INDICA	TE BOTTLES: FILTERED / P	RESERVED (F/	P) $\rightarrow \rightarrow \rightarrow$	N	N	M	M		
COMPANY: Copper fox	CLIEN	T / PROJECT INFORMA	TION:	<u> 100 - 2</u>						
CONTACT: Shaine Unen	JOB #:	912-1	e phone at	Service and the service of			K		1	ERS
ADDRESS:	PO /AF	E:					1 2			AINE
	Legal S	Site Description	14			X	K jen		~	TNC
PHONE: 607-689-5080FAX:	QUOT	E #:			E.	14 5	3		SUIS	CONTAMINATED
(lab use only) Lb67230			SAMPLER (Initials):		5	20	p		Da	L CO
Sample SAMPLE IDENTIFICATION		DATE	TIME	SAMPLE TYPE	Duffell	1			HAZARDOUS	HIGHLY CONTAMINATED ?
# (This description will appear on the	report)		THINL	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-	1.000 1.000 1000		Ξ.	NU NU
DF-6		2-A-2-08	1.	Dustfall	1.2.5		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second of		1
DF-6		1		1						
DF-7					1.200		Constant Constant of Constant			
DF-7			And Anton	Contraction of the	1.111		the state of the	Col Colored	1.1	and south
DF-8	a service									
DF-8		1		1						
	1.000	1	10~162	Solution and the		4.2.8 2	1.0 (3.4 2.2)		1921	
			1200		199					
			14.11	and the second second		a len la de				
States and s	胜 由神时	1. 28 1 A. A. A. 19	1 A	Sec. Sale	1113 20		113 2.2 103	81 182 L 1 1	1.00	
GUIDELINES / REGULATIONS	RATE SALV	Market State	S	PECIAL INSTRU	CTIONS	/ HAZAR	DOUS DETA	ILS	Sec. 1	
	States States	and an area						And shows and	and the second	
Failure to com	inlete all n	ortions of this form	may delay	analysis Plaa	se fill in	this form				
By the use of this form the user acknow								of the white rep	ort con	v.
RELINQUISHED BY: DATE & TIME:	RECEIV		CR	DATE & TIME:		S	AMPLE CONDIT	ION (lab use only)	T
RELINQUISHED BY: DATE & TIME:	RECEIV	ED BY:	TD.	DATE & TIME:	TEMP	ERATURE	SAMPLES RECE	VED IN GOOD COND	ITION (YF	ESV NO
DATE & TIME:	RECEIV	EUDI:		DATE & TUVIE.		(2		Kerne and	-	
REFER TO BACK PAGE FOR REGIONAL LOCATIONS AL	ND SAMPLIN	GINEORMATION	WHITE .	REPORT COPY, PINI	- FILE C	OPY YELL	W - CHENT CO	PY	GENE	14.00

ALS Laboratory Group

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

	-		5
Page	L	of	1

REPORT TO: Rum Brandley REPORT FORMAT / DISTRIBUTION SERVICE REQUESTED COMPANY: Rescan STANDARD OTHER FEGULAR SERVICE (DEFAULT) CONTACT: Rum Brandley PPF EXCEL CUSTOM FAX ADDRESS: IVIT West Hostings GHL(1) EMAIL 2: PHORITY SERVICE (1 DAY or ASAP) EMERGENCY SERVICE (1 DAY WEEKEND) - CONTACT / PHONE: 604 691 91 bb FAX: INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) FAX Legal Site Description: Interact / PROJECT (SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) FAX INVOICE TO: SAMPLE IDENTIFICATION IDE 1 IDE 1 FAX Barphie SAMPLE IDENTIFICATION DATE TIME SAMPLE IDENTIFICATI	Environmental Division (ALS)	Martin State	www.a	lsenviro.co	m					1.14		S.a.				
COMPANY: Description PEGULAR SERVICE (DEFAULT) CONTACT: Rund Atomatican PPF_EXCEL_CUSTOM_FAX RUSH SERVICE (23 DAYS) ADDRESS: IIII Logit Atomatican PRIORITY SERVICE (1 DAY or ASAP) PHONE: Get 400 Total EMAIL 1: PRIORITY SERVICE (1 DAY or ASAP) EMERGENCY SERVICE (1 DAY or ASAP) EMERGENCY SERVICE (1 DAY or ASAP) EMERGENCY SERVICE (1 DAY or ASAP) PHONE: Get 65'1 9Ho FAX: PRIORITY SERVICE (1 DAY or ASAP) INVOICETO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (FP) ANALYSIS REQUEST CONTACT: Stansa Ligat Site Description: INVOICET (PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (FP) INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (FP) INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (CONTACT / PROJECT INFORMATION:	REPORT TO: Ryan Brantley	REPORT FORMAT	/ DISTRIBU	TION			199	SERVIC	E REQU	JESTEL	D					
CONTACT: Rush SERVICE (23 DAYS) ADDRESS: INIT West Hash as 641(1, 1000 or ASAP) Unicare FR Unicare RC Vice 23 DAYS) PHONE: EMAIL 2: PHONE: EMAIL 2: PHONE: EMAIL 2: PHONE: EMERGENCY SERVICE (1 DAY / WEEKEND) - CONTACT / MAILYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) CONTACT: State Description: CONTACT: State Description: CONTACT: Stample MODRESS: PO / AFE: Legal Site Description: DF Itab Work Order# (Initials): (Iab use only) SAMPLE IDENTIFICATION Sample SAMPLE IDENTIFICATION DF -1 HAmod & Date DF -2 DF -2 DF -2 DF -2 DF -2 DF -2 DF -3 DF -3	COMPANY: Rescan	STANDARD	OTH	ER			C	REGUL	AR SER	VICE (DEFAUL					
ADDRESS: III West Hast so fill (I EMAIL 1: PRIORITY SERVICE (1 DAY or ASAP) Uancome FX EMAIL 2: EMERGENCY SERVICE (1 DAY or ASAP) PHONE 664 651 9460 FAX: ANALYSIS REQUEST ANALYSIS REQUEST INVOICE TO: SAME AS REPORT 7 YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST COMPANY: C apper 6 x CLIENT / PROJECT INFORMATION: ANALYSIS REQUEST CONTACT: Shama Use a JOB # 9 (2 - 1) ADDRESS: PO /AFE: Eggl Site Description: THE SAMPLER (Initials): PHONE: 664 - 645 - 50 90 FAX: QUOTE #: SAMPLER (Initials): DF Sample SAMPLE IDENTIFICATION DATE TIME SAMPLE TYPE THE SAMPLE TYPE DF - 1 H Amg-08 Dutfell Initials Initials Initials DF - 2 Initial prevention Initial prevention Initial prevention Initial prevention Initial prevention DF - 2 Initial prevention Initial prevention Initial prevention Initial prevention DF - 2 Initial prevention Initial prevention Initial prevenion Initial prevention Initial pre	CONTACT: Ryan Brantley		Cus	STOM	FAX		100	RUSH S	ERVICE	E (2-3 [DAYS)	line -	111	6.23	al all	
Ummconver File EMAIL 2: EMAIL 2: EMAIL 2: PHONE: 664 681 9460 FAX: ANALYSIS REQUEST ANALYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST COMPANY: C #gga- 5-# CLIENT / PROJECT INFORMATION: ANALYSIS REQUEST COMPANY: C #gga- 5-# CLIENT / PROJECT INFORMATION: INVOICE TO: SAME AS REPORT ? YES / NO COMPANY: C #gga- 5-# CLIENT / PROJECT INFORMATION: INVOICATE BOTTLES: FILTERED / PRESERVED (F/P) INVOICE TO: SAME AS REPORT ? YES / NO COMPANY: C #gga- 5-# CLIENT / PROJECT INFORMATION: INVOICATE BOTTLES: FILTERED / PRESERVED (F/P) INVOICA	ADDRESS: 1111 West Hastings Cothell	EMAIL 1:	pe soored	(Quest)				PRIORI	TY SER	VICE (1 DAY or	ASAP)		國語	13-13	4
PHONE: 664 651 9460 FAX: ANALYSIS REQUEST INVOICE TO: SAME AS REPORT ? YES / NO INDICATE BOTTLES: FILTERED / PRESERVED (F/P) ANALYSIS REQUEST COMPANY: Cappar Gx CLIENT / PROJECT INFORMATION: JOB # 9 (2 - 1) CONTACT: SLame ILvrew JOB # 9 (2 - 1) Indicate Bottles: Legal Site Description: PO / AFE: Image: Cappar Grade Grad	Vancouver BR VOF 233	EMAIL 2:		化学 网络			1.11	EMERG	ENCY S	BERVIC	CE (<1 DA	Y / WEE	KEND) -	CONTAC	CT ALS	
COMPANY: C $ag as^{-1}$ ($s = a$ CLIENT / PROJECT INFORMATION: CONTACT: Shame I/JOB # 9 (2 - 1) ADDRESS: PO /AFE:		1.1.1	1. 1. 1.			<u>.</u>	14	1333		A	NALYSIS	REQUE	ST			
CONTACT: Shame Hore JOB #: $9 (2 - 1)$ ADDRESS: PO / AFE: Legal Site Description: The sample for the samp	INVOICE TO: SAME AS REPORT ? YES / NO	INDICATE BOTTLES:	FILTERED / PI	RESERVED (F/I	P)	$\rightarrow \rightarrow \rightarrow$		\wedge	V		N	N	$\overline{\Lambda}$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COMPANY: Capper Gr	CLIENT / PROJEC	T INFORMA	TION:			93				1 5					
ADDRESS: PO /AFE: Legal Site Description: The sample of the second		JOB #: 912 -	1	的现在分词	S ST	1 2 2 4	1228	4.9		1 4	5	100	111	1	0 2	1
Lab Work Order # (lab use only) SAMPLE IDENTIFICATION (Initials): DF TIME SAMPLE TYPE Type </td <td></td> <td>PO /AFE:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>50</td> <td>7</td> <td></td> <td></td> <td></td> <td>ATE</td> <td></td>		PO /AFE:							10	50	7				ATE	
Sample (lab use only) SAMPLE IDENTIFICATION (Initials): DF TIME SAMPLE TYPE Type <t< td=""><td></td><td>Legal Site Descripti</td><td>on:</td><td></td><td></td><td></td><td>17</td><td>. F</td><td>4</td><td>8 ×</td><td></td><td></td><td></td><td>0</td><td>MIN</td><td>ALT.</td></t<>		Legal Site Descripti	on:				17	. F	4	8 ×				0	MIN	ALT.
Sample (lab use only) SAMPLE IDENTIFICATION DATE TIME SAMPLE TYPE Topological Topological Sample # (Initials): DF TIME SAMPLE TYPE Topological To		QUOTE #:	1442.0.4				J	1V	0	3				a second second	5	
DF-1 4-A-5-08 Dustfall DF-1 PF-2 PF-2 DF-2 PF-3 PF-3					DF		4	1 ~	1º se	W			120	OQ	8 8	
DF-1 4-A-5-08 Dustfall DF-1 PF-2 PF-2 DF-2 PF-3 PF-3	Sample SAMPLE IDENTIFICATION	D/	ATE			LE TYPE								AZAF	IIGHLY	
DF-1 N			- 98	1	5	Ch							-	-		-
DF-2 Image: Constraint of the second se		7 10-	8-00		1 Jus	Aspen 11					1613 212					
DF-2 DF-3 DF-3			2000 - 100 -	1				-			-				-	-
DF-3 DF-3				-		Sector Sector	-	-						-		
DF-3	101. 101			1.			1									-
				1	-	1.			-					-		-
		*		118-191.1	Departs	1122.95	120.07		19 24 3 24							
DF-4 2-Am-08		2-4	-08	Martine Contention		25.22										
DP-4						1.										
DF-5			1. 19 19 19	199.001	141	men .	1	100	1.000					1.		
De-2			100 34	0 (8 , 18 (3)		+	2],	144	0 232		6874	상태를	100	12.01	1013	
GUIDELINES / REGULATIONS SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS	GUIDELINES / REGULATIONS	1996	NEG ROM	SI	PECIAL	INSTRU	CTIO	NS/H	AZAR	DOUS	S DETA	ILS				
				SI	PECIAL	INSTRU	стю	NS / H	AZAR	DOUS	S DETA	ILS				
			with the T	erms and			pecifi	ed on							opy.	
By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy		INCOSIVED DT.	N	K	Aug	11 955	TI	MPERA				and the state of the second second			YES	N
RELINQUISHED BY: DATE & TIME: RECEIVED BY: DATE & TIME: SAMPLE CONDITION (Jab use only)	and a second	COLD STOCK IS NOT THE OWNER OF THE OWNER							TEMPERATURE SAMPLES RECEIVED IN GOOD CONDITION? Y							-

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certific	ate of Analysis		
COPPER FOX META				
ATTN: SHANE URE	N		_	
1330, 1100 MELVILL	E STREET		Reported On:	23-SEP-08 05:40 PM
VANCOUVER BC V	′6E 4A6			
Lab Work Order #:	L682980		Date Receive	ed: 15-SEP-08
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	SCHAFT CREEK 0912-001-02-01			
Other Information:				
Comments:				
	Mas	~		
	GLENYSS WEEKS Account Manager			

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L682980 CONTD.... PAGE 2 of 4 23-SEP-08 17:40

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID	L682980-1	L682980-2	L682980-3	L682980-4	
	Description Sampled Date		07.050.00			
	Sampled Date	07-SEP-08	07-SEP-08	06-SEP-08	06-SEP-08	
	Client ID	DF 7	DF 6	DF 4	DF 5	
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	0.11	<0.10	<0.10	<0.10	
	Total Insoluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10	<0.10	
	Total Soluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10	<0.10	
Anions and Nutrients	Nitrate (as N) (mg/dm2.day)	0.00101	0.000910	0.000497	0.000151	
	Sulfate (SO4) (mg/dm2.day)	<0.0070	<0.0080	<0.0030	<0.0020	
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000052	0.000054	0.000035	0.000034	
	Antimony (Sb)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000010	<0.0000010	
	Arsenic (As)-Total (mg/dm2.day)	<0.0000030	<0.000030	<0.000010	<0.0000010	
	Barium (Ba)-Total (mg/dm2.day)	0.0000039	0.0000054	0.00000216	0.00000104	
	Beryllium (Be)-Total (mg/dm2.day)	<0.000010	<0.000020	<0.000050	<0.000050	
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000010	<0.000020	<0.000050	<0.000050	
	Boron (B)-Total (mg/dm2.day)	<0.00030	<0.00030	<0.00010	<0.00010	
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000010	<0.0000020	<0.0000050	<0.0000050	
	Calcium (Ca)-Total (mg/dm2.day)	0.00082	<0.00080	0.00036	<0.00020	
	Chromium (Cr)-Total (mg/dm2.day)	<0.000010	<0.000020	<0.000050	<0.000050	
	Cobalt (Co)-Total (mg/dm2.day)	0.0000068	0.0000065	0.0000015	<0.000010	
	Copper (Cu)-Total (mg/dm2.day)	0.000775	0.000917	0.000813	0.000277	
	Iron (Fe)-Total (mg/dm2.day)	<0.00040	<0.00050	<0.00020	<0.00010	
	Lead (Pb)-Total (mg/dm2.day)	0.0000104	0.0000537	0.0000297	0.0000124	
	Lithium (Li)-Total (mg/dm2.day)	<0.00010	<0.00020	<0.000050	<0.000050	
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0010	<0.0020	<0.00050	<0.00050	
	Manganese (Mn)-Total (mg/dm2.day)	0.0000153	0.0000128	0.00000819	0.00000429	
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000010	<0.0000020	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000010	<0.0000020	<0.0000050	<0.0000050	
	Nickel (Ni)-Total (mg/dm2.day)	<0.000010	<0.000020	<0.000050	<0.000050	
	Phosphorus (P)-Total (mg/dm2.day)	<0.0040	<0.0050	<0.0020	<0.0010	
	Potassium (K)-Total (mg/dm2.day)	<0.030	<0.030	<0.010	<0.010	
	Selenium (Se)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000010	<0.000010	
	Silicon (Si)-Total (mg/dm2.day)	<0.00070	<0.00080	<0.00030	<0.00020	
	Silver (Ag)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000010	<0.0000010	
	Sodium (Na)-Total (mg/dm2.day)	<0.030	<0.030	<0.010	<0.010	
	Strontium (Sr)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000010	<0.000010	
	Thallium (TI)-Total (mg/dm2.day)	<0.0000030	<0.000030	<0.0000010	<0.0000010	
	Tin (Sn)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000010	<0.0000010	
	Titanium (Ti)-Total (mg/dm2.day)	<0.00010	<0.00020	<0.000050	<0.000050	
	Uranium (U)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000010	<0.0000010	
	Vanadium (V)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000010	<0.000010	
	Zinc (Zn)-Total (mg/dm2.day)	0.000092	0.000214	0.000074	0.000058	

L682980 CONTD.... PAGE 3 of 4 23-SEP-08 17:40

Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if appl	icable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
DUSTFALLS-COM-DM2-		Combined dustfalls-Total, soluble, insol	BCMOE "DUSTFALLS"
Dustfall analysis is carried	d out in accor	dance with procedures published by the B.C.	Ministry of Environment Laboratory.
HG-DUST(DM2-CVAFS-	Dustfall	Total Mercury in Dustfalls by CVAFS	EPA 245.7
American Public Health A	ssociation, a	nd with procedures adapted from "Test Meth	ne Examination of Water and Wastewater" published by the ods for Evaluating Solid Waste" SW-846 published by the United apour atomic fluorescence spectrophotometry (EPA Method
MET-DUST(DM2)-ICP-VA	Dustfall	Total Metals in Dustfalls by ICPOES	EPA 6010B
American Public Health A	ssociation, a	nd with procedures adapted from "Test Meth	ne Examination of Water and Wastewater" published by the ods for Evaluating Solid Waste" SW-846 published by the United /ely coupled plasma - optical emission spectrophotometry (EPA
MET-DUST(DM2)-MS-VA	Dustfall	Total Metals in Dustfalls by ICPMS	EPA 6020A
American Public Health A	ssociation, a	nd with procedures adapted from "Test Meth	ne Examination of Water and Wastewater" published by the ods for Evaluating Solid Waste" SW-846 published by the United rely coupled plasma - mass spectrometry (EPA Method 6020A).
NO3-IC-VA	Dustfall	Dustfall Nitrate by Ion Chromatography	BC LAB MAN PART SOLUBLE - ANIONS
Cations by Ion Chromatog	graphy'. The		nethod 'Particulate - Total' and 'Particulate - Soluble - Anions and g procedures adapted from APHA Method 4110 "Determination of c Anions by Ion Chromatography".
SO4-IC-VA	Dustfall	Dustfall Sulphate by Ion Chromatography	BC LAB MAN PART SOLUBLE - ANIONS
Cations by Ion Chromatog	graphy'. The		nethod 'Particulate - Total' and 'Particulate - Soluble - Anions and sing procedures adapted from APHA Method 4110 "Determination nic Anions by Ion Chromatography".
			ased on nationally or internationally accepted methodologies. at performed analytical analysis for that test. Refer to the list below.
Laboratory Definition C	ode Lab	poratory Location Labora	tory Definition Code Laboratory Location
VA		; LABORATORY GROUP - ICOUVER, BC, CANADA	

Methods Listed (if applicable):

	ased On)
--	----------

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Rescan Rescan Environmental Services Ltd. Rescan Website: www.rescan.com 6 th Floor, 1111 West Hastings Street Suite 90 E-mail: rescan@rescan.com Vancouver, B.C. V6E 2J3 Yellowe Tel: (604) 689-9460 Fax: (604) 687-4277 Tel: (86					Yellowknife Rescan Nor Suite 908-52 Yellowknife Tel: (867) 92	thern 201 5 , NT 2 20-20	0 ^{In} Ave X1A 3S 90 Fax	nue 19 11: (86	7) 920-	2015		Seattle Office: Rescan Consultants Inc. Suite 3200,1001 Fourth Avenue Plaza Seattle, WA 98154, USA Tel: (206) 726-2145 Fax: (206) 382-9648					
PROJECT N	CH		NEERS: (P		PROJECT #:		CONTAINERS:	ן נ		Y	1	R	///A	The second secon			
STATION NUMBER	DATE	TIME	COMP.	GRAB	682980 SAMPLE IDENTIFIC (DEPTH, REPLIC)	ATION	- OS	R	2/	/	/	/	Rescan Contact:	jouver, BC			
1 OFT	Sept 7		SAMPLE	Y	(our en, nur blo)		2	X					- un -10				
35-4	Sept. 6			14		~		1									
5 OFS	V			V			U	U									
6 7																	
8											- 10						
10																	
12																	
14																	
15																	
17																	
19 20																	
21 Received hur			Dete	/Time	Relinguished by:		Di	te/Time	-	Boutle	Anal	/sis: 🖄	Rush Analysis:				
Received by: Company: Name:				a thruck	Company: Name:		D/M/	۲.		Remark		/sis: 12	MUSH ANAIYSIS: 🗳	COURIER COPY			
Received by: Company:	(Print and Sign)		Date D/M/Y	a/Time	Received for babolatory I Company: Name:		D/M/		1					11			
Name:	(Print and Sign)		11		(Printe nd Sign)	17	1	OK T	a	n	-	1100		Page of			

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certificate of Analysis		
RESCAN ENVIRON			
ATTN: DAN JARRA	Π		
SIXTH FLOOR 1111 WEST HASTIN VANCOUVER BC V		Reported On:	22-DEC-08 05:24 PM
Lab Work Order #:	L715824	Date Receive	d: 08-DEC-08
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	SCHAFT AIR QUALITY 0912-001-02-01		
Other Information:			
Comments:			
	Amber Springer Account Manager		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L715824 CONTD

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE	2	of	3
22-DEC	-08	17:	17

	Sample ID	L715824-1	L715824-2	L715824-3	L715824-4	
	Description Sampled Date Sampled Time	28-NOV-08	28-NOV-08	27-NOV-08	28-NOV-08	
	Client ID	FD-1	FD-2	FD-3	FD-4	
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	0.10	0.23	0.25	0.16	
	Total Insoluble Dustfall (mg/dm2.day)	<0.10	<0.10	<0.10	<0.10	
	Total Soluble Dustfall (mg/dm2.day)	<0.10	0.18	0.18	0.13	
Metals	Aluminum (Al)-Total (mg/dm2.day)	<0.00010	<0.000080	<0.00010	<0.00010	
	Antimony (Sb)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000030	<0.000060	
	Arsenic (As)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000030	<0.000060	
	Barium (Ba)-Total (mg/dm2.day)	0.0000149	0.0000136	0.0000148	<0.000010	
	Beryllium (Be)-Total (mg/dm2.day)	<0.000020	<0.000010	<0.000010	<0.000030	
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000020	<0.000010	<0.000010	<0.000030	
	Boron (B)-Total (mg/dm2.day)	<0.00030	<0.00030	<0.00030	<0.00060	
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000020	0.0000016	<0.0000010	<0.000030	
	Calcium (Ca)-Total (mg/dm2.day)	0.0026	0.0023	0.0024	<0.0030	
	Chromium (Cr)-Total (mg/dm2.day)	<0.00020	<0.00010	<0.00024	<0.000030	
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000030	<0.0000060	
	Copper (Cu)-Total (mg/dm2.day)	0.0000803	0.000109	0.000154	0.000187	
	Iron (Fe)-Total (mg/dm2.day)	<0.00090	0.00095	0.00129	<0.0020	
	Lead (Pb)-Total (mg/dm2.day)	<0.0000020	<0.0000010	<0.0000010	<0.000030	
	Lithium (Li)-Total (mg/dm2.day)	<0.00020	<0.00010	<0.00010	<0.00030	
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0030	<0.0030	<0.0030	<0.0060	
	Magnesian (Mg) Fotal (mg/dm2.day) Manganese (Mn)-Total (mg/dm2.day)	0.0000720	0.0000535	0.0000682	0.0000369	
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000020	<0.00000010	<0.0000002	<0.0000030	
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000020	<0.0000010	<0.0000010	<0.0000030	
	Nickel (Ni)-Total (mg/dm2.day)	<0.000020	<0.000010	<0.000010	<0.000030	
	Phosphorus (P)-Total (mg/dm2.day) Potassium (K)-Total (mg/dm2.day)	<0.0090	<0.0080	<0.0090	<0.020	
	Selenium (Se)-Total (mg/dm2.day)	<0.060	<0.060	<0.060 <0.000030	<0.10	
		<0.000030	<0.000030		<0.000060	
	Silicon (Si)-Total (mg/dm2.day)	<0.0020	0.0016	0.0020	<0.0030	
	Silver (Ag)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000030	<0.0000060	
	Sodium (Na)-Total (mg/dm2.day)	< 0.060	<0.060	<0.060	<0.10	
	Strontium (Sr)-Total (mg/dm2.day)	0.0000063	0.0000054	0.0000070	<0.000060	
	Thallium (TI)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000030	<0.0000060	
	Tin (Sn)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000030	<0.000060	
	Titanium (Ti)-Total (mg/dm2.day)	<0.00030	<0.00030	< 0.00030	<0.00060	
	Uranium (U)-Total (mg/dm2.day)	<0.0000030	<0.0000030	<0.0000030	<0.0000060	
	Vanadium (V)-Total (mg/dm2.day)	<0.000030	<0.000030	<0.000030	< 0.000060	
	Zinc (Zn)-Total (mg/dm2.day)	0.000118	0.000100	0.000095	0.000071	

Additional Comments for Sample Listed:

L715824 CONTD.... PAGE 3 of 3 22-DEC-08 17:17

Matrix **Report Remarks** Sample Comments Samplenum Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) DUSTFALLS-COM-DM2- Dustfall Combined dustfalls-Total, soluble, insol BCMOE "DUSTFALLS" VA Dustfall analysis is carried out in accordance with procedures published by the B.C. Ministry of Environment Laboratory. HG-DUST(DM2-CVAFS-Dustfall Total Mercury in Dustfalls by CVAFS EPA 245.7 VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7) MET-DUST(DM2)-ICP-VA Dustfall Total Metals in Dustfalls by ICPOES **FPA 6010B** This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B). MET-DUST(DM2)-MS-VA Dustfall Total Metals in Dustfalls by ICPMS EPA 6020A This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A). ** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location Laboratory Location Laboratory Definition Code VA ALS LABORATORY GROUP -VANCOUVER, BC, CANADA GLOSSARY OF REPORT TERMS Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. mg/kg (units) - unit of concentration based on mass, parts per million ma/L (units) - unit of concentration based on volume, parts per million N/A - Result not available. Refer to qualifier code and definition for explanation Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary. ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed. ALS Laboratory Group assumes no liability for the use or interpretation of the results.

1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free 1-800-665-0243 Fax. 604-253-6700

#2 -21 Highfield Circle SE, Calgary AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

#2 - 8820 100th Street, Fort St. John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286

www.alsenviro.com

CHAIN OF CUSTODY FORM

1 OF PAGE 1

SEND	REPO	RT TO:			27159	324	CHAINC	JF G	USI	IODY	FUR	.ivi					PA	NGE 1	OF 1
COMP	IPANY: Rescan Environmental Services, Ltd									SIS RE	QUES	TED:							
ADDR	DDRESS: 6th Floor, 1111 West Hastings Street						ulat												
CITY:	TY: Vancouver		PROV	BC	POSTAL CODE:	V6E 2J3	particulat							1.5					
TEL:		(604) 689	9-9460	FAX	(604) 687-4277	CONTACT:	D. Jarratt												
PROJ	CTN	AME AND	NO.:	Schaft Air	Quality 0912-001-02-01	SAMPLER:	O. Dennis	soluble	e										
QUOTE NO REPORT FOR			HARD	PO NO.: COPY	EMAIL - ADDRESS:	ALS CONTACT: djarratt@resca	Amber Springer n.com												
		RMAT:	FAX	(🛛 E		OTHER:		particulate	e		I otal Metals	11							
WC	#	s	SAMPLE IDEN	TIFICATION	DATE / TIM	TIME	MATRIX	Total	insolub		lota							NOTES (sa comments, du	mple specific ue dates, etc.)
		FD-1-TF	,		2008-11-28		dustfall	X											
E		FD-1-TN	1	1964	2008-11-28		dustfall				×		1.0						
		FD-2-TP			2008-11-28	N 8	dustfall	X											
ANO	1	FD-2-TN	1		2008-11-28		dustfall				x								
FOR LAB USE	1	FD-3-TP			2008-11-27		dustfall	x											
TAB	-	FD-3-TN	1	1 - 1	2008-11-27		dustfall				x								11
B	1	FD-4-TP			2008-11-28		dustfall	X											-
-	-	FD-4-TM		2008-11-28		dustfall			4	×									
+	-	100				-	-	-			+	++	++-	-	-				
		ND			ORUSH SPECIFY DATE		(surcharge may ap	iply)		RELING		D 8Y:	DATE:	De	ec-05-2	800	RECEIVED B	Y: DATE.	Dec 8/1
REQUIRED: SEND INVOICE TO: SAME AS REPORT DIFFERENT FROM REPORT (provide details below)			elow)			Shana Dennis TIME: RELINQUISHED BY: DATE:		1	1:30	RECEIVED B	TIME.	10=00							
NVOIC						An				ILL DAL	OIGHE		TIME:	-		-	NEOLACO B	TIME.	
		TRUCTION		<u>`</u> _				-					FC	_	ABU	_			(73)
			lowest deter		bossible, including cyanic	les and all metals.			-	Cooler		act? oN/A	Sample Te Frozen?				°C Cooline	Method? ackslce	eNone

ALS Environmental excellence in analytical testing