COPPER FOX METALS INC.

SCHAFT CREEK PROJECT

ACCESS ROUTE TERRAIN AND GEOHAZARDS MAPPING

PHASE 1 DRAFT REPORT

PROJECT NO: 0530-001 MARCH 19, 2008 DISTRIBUTION LIST: CLIENT 1 COPY BGC 1 COPY

March 19, 2008

Project No. 0530-001

Shane Uren, M.A.Sc., R.P.Bio. VP Environment & Permitting Copper Fox Metals Inc. Suite 404, 999 Canada Place Vancouver, BC V6C 3E2

Dear Shane:

Re: Schaft Creek Access Route Terrain and Geohazards Mapping

Please find attached one copy of our above referenced final report dated March 19, 2008.

Should you have any questions or comments, please do not hesitate to contact us at your earliest convenience.

Yours sincerely, BGC ENGINEERING INC. per:

Kris Holm, M.Sc., P.Geo. Project Manager

EXECUTIVE SUMMARY

The Schaft Creek copper-molybdenum deposit is located in the British Columbia Coast Mountains about 120 km northeast of Wrangell, Alaska, 60 km south of Telegraph Creek, BC, and about 160 km northwest of Stewart, BC (Figure 1). The access route and minesite areas are located within the Mess Creek Watershed, which drains an area of 2,306 km² and is a major tributary of the Stikine River. The minesite area and tailings options are located in upper Schaft and Hickman Creeks, tributaries to Mess Creek. Two access route options exist. The first option (referred to herein as the Mess Creek access route) extends north from More Creek along Upper Mess Creek, entering the minesite area and Schaft Creek drainage near Snipe Lake. A second option (Tahltan Highland route) traverses a high elevation plateau east of Mess Creek, and descends slopes on the east side of Mess Creek to intersect the Mess Creek access route at approximately km 25.5.

This report provides an overview assessment of surficial geology and geohazards for the Mess Creek Access route and for the part of the Tahltan Highland route descending into Mess Creek (Figure 1). A general overview of geohazards along the southernmost ~3 km of the Tahltan Highland route (ascent from More Creek) is also provided. This report forms part of a geohazards and terrain stability investigation that is a required component of the permitting process for the Schaft Creek Project, and provides information important for road and minesite development planning.

Upper Mess Creek follows a broad, U-shaped valley with elevations ranging from 720 – 1030 m along the valley bottom to 2300 m on adjacent ridgetops. Lower valley slopes are overlain by glacial till and colluvium, with sporadic bedrock outcrops in steeper areas and at channel crossings. Along the valley bottom, extensive sand and gravel fluvial deposits occur on a broad floodplain up to 1 km in width. Upper hillslopes are steep, gullied rockslopes partially overlain by thin rubble colluvium.

Geohazards with the potential to impact the Mess Creek access route include debris flows, debris floods, rockfall, snow avalanches, and flooding. Debris flow hazard was identified at 10 channel crossings, including 3 locations where the road crosses a major debris fan. Rockfall hazard exists where the road traverses below steep rockslopes; however, exposure to natural rockfall hazard is uncommon along the access route and of lower frequency than would likely occur on rock cuts. Snow avalanche hazard exists where the access road crosses avalanche paths below the treeline in the lower part of the runout zone; these occur within 23 terrain polygons intersecting the access route. Flood hazard exists at creek crossings and from km 31.7 to 32.9 where the access route crosses the Mess Creek floodplain.

The Tahltan Highland Route ascends steep terrain from More Creek onto a hummocky rock

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft Creek.doc

plateau in the vicinity of Arctic Lake (1475 m). G Creek include snow avalanches and rockfall.

m). Geohazards on the initial ascent from More I.

The Tahltan highland route descends slopes on the east side of Mess Creek to intersect the Mess Creek option at approximately km 25.5. The road alignment crosses hummocky, gullied bedrock partially overlain by colluvium in upper sections, and colluvium and till slopes at lower elevations. Slope gradients average 15° to 35°, up to ~45° in polygon 157 (terrain stability class V). Hazards include one debris flow gully (polygon 157) and several short (~200 m) slopes subject to snow avalanche hazard (Figure 3.2). The debris flow gully in polygon 157 is deeply incised and would require detailed assessment of rockslope stability for the design of bridge abutments.

TABLE OF CONTENTS

1.0	INTR	ODUCTION	6
	1.1	Area Overview	6
	1.2	Terms of Reference	6
	1.3	Scope of Work	6
	1.4	Terrain Mapping Methods	
	1.5	Mapping Reliability	
	1.6	Drainage Interpretations	9
	1.7	Terrain Stability Interpretations	9
2.0	STUD	OY AREA DESCRIPTION	11
	2.1	Bedrock Geology	
	2.2	Climate	12
	2.3	Topography, Glacial History, and Deposition of Surficial Materials	12
3.0	GEO	HAZARDS	14
	3.1	Mess Creek Access Route	14
	3.2	Tahltan Highland Route	15
		3.2.1 South-most (More Creek) end of Tahltan Highland Route	15
		3.2.2 North-most (Mess Creek) end of Tahltan Highland Route	16
4.0		OMMENDATIONS	
5.0		SURE	
6.0	REFE	RENCES	19

.

LIST OF TABLES

Table 1.1 -	Example Materials and Locations for Each Drainage Class	.9
Table 1.2.	Terrain Stability Ratings for Road Construction	10
Table 1.3.	Guidelines for Assigning Terrain Stability Classes	10

LIST OF FIGURES

Figure 1.1. Study Area (outlined in white)	7
Figure 3.1. Ascent of Tahltan Highland Route from More C	Creek
Figure 3.2. Descent of Tahltan High Route into Mess Cree	

LIST OF DRAWINGS

Terrain Map S					
Terrain Map N					
Landslide Hazards Terrain Map S					
Landslide Hazards Terrain Map N					
Avalanche Hazards Terrain Map S					
Avalanche Hazards Terrain Map N					
	Terrain Map N Landslide Hazards Terrain Map S Landslide Hazards Terrain Map N Avalanche Hazards Terrain Map S	Terrain Map N Landslide Hazards Terrain Map S Landslide Hazards Terrain Map N Avalanche Hazards Terrain Map S	Terrain Map N Landslide Hazards Terrain Map S Landslide Hazards Terrain Map N Avalanche Hazards Terrain Map S	Terrain Map N Landslide Hazards Terrain Map S Landslide Hazards Terrain Map N Avalanche Hazards Terrain Map S	Terrain Map S. Terrain Map N. Landslide Hazards Terrain Map S. Landslide Hazards Terrain Map N. Avalanche Hazards Terrain Map S. Avalanche Hazards Terrain Map N.

LIST OF APPENDICES

Appendix I Explanation of Terrain Mapping Symbols
Appendix II List of Airphotos
Appendix III Bedrock Geology Along the Access Route
Appendix IV Bedrock Geology Legend
Appendix IV Surficial Geology Along the Access Route

LIMITATIONS OF REPORT

BGC Engineering Inc. (BGC) prepared this report for the account of Copper Fox Metals Inc. The material in it reflects the judgment of BGC staff in light of the information available to BGC at the time of report preparation. Any use which a third party makes of this report, or any reliance on decisions to be based on it are the responsibility of such third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

As a mutual protection to our client, the public, and ourselves, all reports and drawings are submitted for the confidential information of our client for a specific project. Authorization for any use and/or publication of this report or any data, statements, conclusions or abstracts from or regarding our reports and drawings, through any form of print or electronic media, including without limitation, posting or reproduction of same on any website, is reserved pending BGC's written approval. If this report is issued in an electronic format, an original paper copy is on file at BGC Engineering Inc. and that copy is the primary reference with precedence over any electronic copy of the document, or any extracts from our documents published by others.

This study is at an overview level only and should not be used for final design or construction. BGC will not assume any liability for damages that may occur as a consequence of using this report on a site-specific basis.

This report describes current conditions. Any future changes in the area (e.g., development, forest fires, logging, road building) may change geohazard levels and/or terrain characteristics within the study area. BGC will not assume any liability for damages that may occur as a consequence of such changes.

1.0 INTRODUCTION

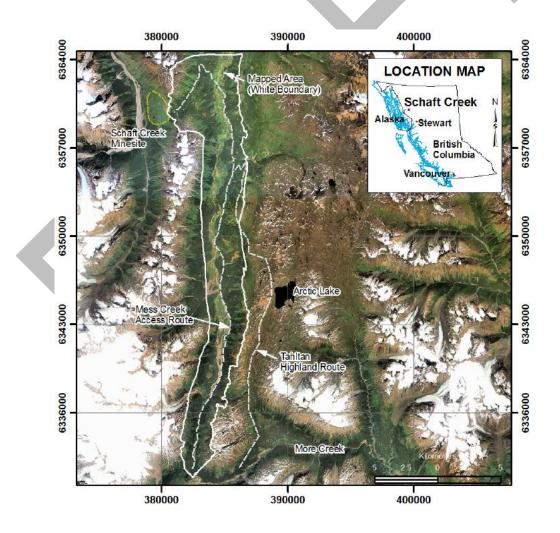
1.1 Area Overview

The Schaft Creek copper-gold-molybdenum deposit is located in the British Columbia Coast Mountains about 120 km northeast of Wrangell, Alaska, 60 km south of Telegraph Creek, BC, and about 160 km northwest of Stewart, BC (Figure 1.1). The access route and minesite areas are located within the Mess Creek Watershed, which drains an area of 2,306 km² and is a major tributary of the Stikine River. The minesite area and tailings options are located in upper Schaft and Hickman Creeks, tributaries to Mess Creek. Two access route options exist. The first option (Mess Creek access route) extends north from More Creek along Upper Mess Creek, entering the minesite area and Schaft Creek drainage near Snipe Lake. A second option (Tahltan Highland route) traverses a high elevation plateau south of Mess Creek, and descends slopes on the east side of Mess Creek to intersect the first road option at km 25.5. A partially constructed access road parallel to More Creek extends to Highway 37 east of the Iskut River. The study area considered in this report includes the entire length of the Mess Creek access route, and the south and north ends of the Tahltan Highland where the alignment ascends and descends from the high plateau.

1.2 Terms of Reference

Copper Fox retained BGC Engineering Inc. (BGC) to prepare terrain and geohazard maps for the access route, with an initial office-based phase of work to be completed in early 2008, and a second phase commencing in Spring/Summer 2008 that will include fieldwork and a more detailed geohazard assessment. BGC's work was based on a work plan submitted to Copper Fox Metals Inc. (CF) titled "Terrain and Geohazards Mapping, Schaft Creek, BC" dated August 21, 2007.

1.3 Scope of Work


BGC understands that the following preliminary work was required within the study area shown in Figure 1, which encompasses slopes adjacent to the Mess Creek access route between More Creek and Snipe Lake:

- Preparation of a terrain map showing surficial materials and geohazards, including the initation and runout zones of existing landslides, and zones subject to snow avalanche hazard; and an
- overview description of terrain and geohazards.

An overview description of geohazards is also provided for the southernmost 3 kilometres of the Tahltan Highland route, for the ascent to the high elevation plateau in the vicinity of Arctic Lake.

BGC further understands that this work will form Phase 1 of a geohazard assessment of the proposed access route, to be followed by a second phase of more detailed geohazard mapping and field assessments in 2008, including expansion of the study area to include the minesite. This report provides a description of work completed for Phase 1. The proposed scope of work for Phase 1 does **not** include:

- Site-specific assessments of geohazard frequency and magnitude
- Assessment of hydrologic (flood) hazards
- Mapping of individual snow avalanche paths
- Assessment of geohazards related to construction
- Assessment of geohazards related to seismic activity
- Recommendations for geohazard mitigation

Figure 1.1. Study Area (outlined in white)

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft Creek.doc

1.4 Terrain Mapping Methods

Terrain mapping methods are based on the guidelines and standards set by the Resources Inventory Committee (1996) and the Mapping and Assessing Terrain Stability Guidebook (Ministry of Forests 1999). Terrain classification followed the provincial system (Howes and Kenk, 1997). Mapping symbols are defined on the terrain maps and in Appendix 1. A list of airphotos is provided in Appendix II.

Terrain mapping was done by Kris Holm, M.Sc., P.Geo. (KH) of BGC. Matthias Jakob, Ph.D., P.Geo. (MJ) reviewed the mapping. Work was based on airphoto interpretation with field checking anticipated during the second phase of this project in Summer 2008.

Symbols describing material types and drainage classes were added to all terrain polygons. Polygons intersected by the proposed road alignment were also assigned terrain stability classes. Atticus Spatial Information Management Ltd. (Atticus) transferred the polygon boundaries from the air photos to the digital trim base by mono-restitution methods.

1.5 Mapping Reliability

The accuracy of terrain mapping depends on numerous factors, such as the skill and experience of the mapper, the scale and quality of airphotos used, the type and density of vegetation, field access and length of time spent in the field, quality of base maps, and type and complexity of terrain and surficial materials. For this project, we consider the accuracy to be relatively high because the work was carried out by an experienced mapper (KH) under the review of an experienced geoscientist (MJ), and airphoto scale and quality is appropriate. Factors limiting the accuracy of mapping include dense forest cover in Mess Creek, and lack of field checking for this initial project phase (field checking to be conducted in project phase 2).

The minimum size of terrain polygons for 1:20,000 scale terrain mapping is about 2 ha. Thus local variations in terrain conditions over areas of 2-3 ha, or over distances of less than about 150 m, were not mapped. As a result, there may be considerable within-polygon variation in slope steepness, material characteristics and soil moisture. In addition, terrain stability ratings assigned to terrain polygons intersecting the proposed road alignment are representative of the entire polygon and may not reflect detailed site conditions on the alignment. This implies that detailed planning of construction will require further ground checking to identify sites that may be more sensitive to disturbance than the average conditions mapped for an individual polygon.

1.6 Drainage Interpretations

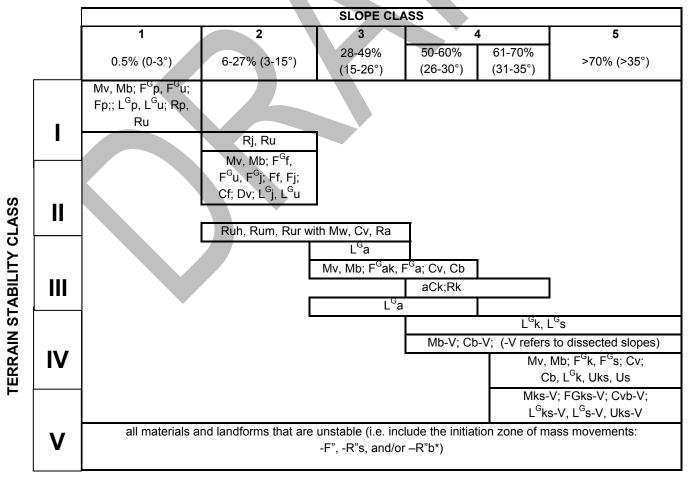
Drainage classes rate the potential for materials within a polygon to be saturated, and take into account both material permeability and the potential for water to drain into a polygon (Table 2.3). For example, a slope containing coarse, highly permeable material may be assigned an imperfect (i) drainage class if it was located in an area where abundant water drained into the polygon.

Drainage Class	Description	Example materials and locations
Rapid (r)	Water is removed from the soil rapidly in	Exposed rock
	relation to supply	
Well (w)	Water is removed from the soil readily but	Thin colluvium, bedrock partially covered in
	not rapidly	colluvium, till, upper slopes
Moderate (m)	Water is removed from the soil somewhat	Thicker colluvium, till, mid-lower slopes
	slowly in relation to supply	
Imperfect (i)	Water is removed from the soil sufficiently Lowermost slopes, gully bottoms, mois	
	slowly in relation to supply to keep the soil	floodplains
	wet for a significant part of the growing	
	season	
Poor (p),	Water is removed so slowly in relation to	Bogs in bedrock depressions, marshy or wet
	supply that the soil remains wet for a	areas of floodplains.
	comparatively large part of the time the	
	soil is not frozen	

Table 1.1 - Example Materials and Locations for Each Drainage Class

1.7 Terrain Stability Interpretations

Terrain stability refers to mass movements such as debris avalanches, debris flows, and rock fall. Terrain stability ratings range from class **I** (stable) to class **V** (unstable), and indicate the likelihood of instability resulting from road construction (or clearcut logging in the case of forestry applications) (Table 1.2). Terrain stability ratings were assigned to polygons intersecting or adjacent to the proposed road alignment.


The general criteria for assigning terrain stability classes are shown in Table 1.3. These guidelines are based primarily on slope steepness, material type and texture, and geomorphological processes. In addition, ratings were adjusted based on site-specific factors such as slope morphology and soil drainage. For example, a slope morphology that includes irregular, near-surface bedrock would typically be rated as more stable than a similar slope with a smooth profile, because bedrock irregularities tend to hold surficial materials in place. Relatively poorly drained or wet slopes may be prone to slope failures

through a reduction in shear strength due to high soil pore water pressure, and may be assigned a more conservative terrain stability rating.

Table 1.2. Terrain Stability Ratings for Road Construction

Terrain stability class	Interpretation		
I	No significant stability problems exist.		
II	There is a very low likelihood of landslides following road construction. Minor slumping is expected along road cuts, especially for 1 or 2 years following construction.		
III	There is a low likelihood of landslide initiation following road construction. Minor slumping is expected along road cuts, especially for 1 or 2 years following construction.		
IV	Expected to contain areas with a moderate likelihood of landslide initiation following road construction.		
v	Expected to contain areas with a high likelihood of landslide initiation following road construction.		

Table 1.3. Guidelines for Assigning Terrain Stability Classes

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft) Creek.doc

2.0 STUDY AREA DESCRIPTION

2.1 Bedrock Geology

The Schaft Creek copper-gold-molybdenum deposit and proposed access route are located in the northern part of the Intermontane Belt of the Canadian Cordillera, in Stikine assemblage rocks on the eastern boundary of the Coast Plutonic Complex (Logan et al. 1997, Giroux 2004). Much of Shaft Creek is located within Stuhini group volcanic and arcderived sedimentary rocks. The porphyry mineral deposit is hosted in three main zones by hydrothermally altered volcaniclastic rocks, felsic porphyritic dykes, and breccias overlain by relatively unaltered andesitic volcanic rocks. Northeast of the proposed open pit footprint and Mt. LaCasse, limestone bedrock underlies terrain in the vicinity of Skeeter Lake.

Granitic Coast intrusions occur to the northwest and south of the Schaft Creek deposit, including extensive exposures on the west side of Mess Creek and areas west of Schaft Creek. On the east side of Mess Creek in the vicinity of the access road, intrusives are also exposed within the monzonite Loon Lake Stock and in less extensive granitic Coast intrusion outcrops. Further north and south of the Loon Lake Stock, terrain is underlain by Devonian to Jurassic age, low grade (sub-greenschist) metamorphosed volcanic, volcanoclastic and sedimentary rock. Appendix III provides a list of bedrock types and faults that intersect the Schaft Creek access road, based on Logan et al. (1997).

Bedrock structure reflects complex, multiple phases and styles of deformation and faulting from Devonian to Late Tertiary time. The overall intensity of regional scale deformation increases northward, from weakly deformed bedrock in the Forrest Kerr area to more intensely deformed Devonian and Early Carboniferous rock in Mess Creek. Angular unconformities in the Mess creek area appear to reflect several phases of deformation, including an early contractional phase and two additional phases in Late Jurassic – Early Cretaceous and Late Cretaceous – Tertiary time that correspond with development of the Skeena Fold and Thrust Belt (Evenchick 1991). Both Mess creek and Schaft follow extensional fault zones comprised of several fault-bounded blocks (grabens). Northnortheast trending listric normal faults associated with the graben structure form steep escarpments on the east side of Mess Creek.

2.2 Climate

Schaft Creek and the proposed access route are located in a transition zone between wetter conditions of the British Columbia coast and drier conditions in the interior. Most of the study area lies within the Northern Coastal Mountains hydrological zone (9A; Coulson and Obedkoff 1998), characterized at higher elevations by cold winters, short cool summers, and high annual precipitation. The major climatic processes during the fall and winter months include frontal cyclones arriving from the Pacific Ocean, resulting in precipitation as moist air masses are forced upwards over the Coast Mountains. Most precipitation from October through May falls as snow. A more detailed summary of climate at Schaft Creek is provided by Rescan (2006).

2.3 Topography, Glacial History, and Deposition of Surficial Materials

The portion of Mess Creek traversed by the access route follows a broad, U-shaped valley with elevations ranging from 720 –1030 m along the valley bottom to 2300 m on adjacent ridgetops. Lower valley slopes are overlain by glacial till and colluvium, with sporadic bedrock outcrops in steeper areas and at channel crossings. Along the valley bottom, extensive sand and gravel fluvial deposits occur on a broad floodplain up to 1 km in width. Upper hillslopes are steep, gullied rockslopes partially overlain by thin rubble colluvium. Surficial materials within terrain polygons intersecting the proposed access route are listed in Appendix V.

The Tahltan Highland Route ascends steep (approximately $20^{\circ} - 40^{\circ}$) terrain north of More Creek (~1000 m elev.) onto a hummocky rock plateau east of the study area, in the vicinity of Arctic Lake (1475 m elev.). From there it descends moderately steep (average 15° to 35°) slopes on the east side of Mess Creek, intersecting the Mess Creek Access route at approximately km 25 (~775 m elev). The upper part of this road section crosses hummocky, gullied bedrock partially overlain by colluvium. Blankets of colluvium and till overlie slopes at lower elevations.

The topography within the study area reflects burial beneath the Cordilleran ice sheet during the Late Wisconsinan Fraser Glaciation (ca. 25-10 ka), followed by Holocene alpine glaciation and erosion due to fluvial and landslide processes. McCuaig (2002) notes two main phases of ice flow that are thought to have occurred during the Fraser Glaciation. In earlier to middle stages of glaciation, ice extent and thickness increased to form the continental scale, Cordilleran Ice Sheet, with south-westward flow towards the Pacific Ocean. During the later stages of glaciation, ice flow became confined to major valleys and fijords, and retreated primarily by frontal retreat and downwasting. The broad U-shape of Mess creek reflects preferential glacial scour of the weaker, fractured rocks along the Mess Creek fault zone.

During Holocene time, several episodes of glacial advance and retreat have occurred since about 7700 calendar years before present (cal-YBP), most recently during the "Little Ice Age" (LIA) from the 12th to 19th centuries (Ryder and Thomson 1986, Desloges and Ryder 1990, Luckman and Villalba 2001, Larocque and Smith 2003, Lewis and Smith 2004, Thompson et al. 2006, Koch 2006). In most areas, the largest Holocene glacial advance culminated in the early to mid 1800's. Since then, many glaciated areas have decreased by over 30% with over 200 m of associated loss in ice thickness in some basins (Bovis and Evans 1996, Ryder and Thompson 1986).

The valley bottom of Mess Creek has not been covered in ice since the Fraser Glaciation. However, several creeks on the west side of Mess Creek have increased sediment supply from areas subject to recent glacial retreat (e.g. polygons 269, 417, 429), and have glacially oversteepened slopes prone to rockfall or rock slides (e.g. polygon 434). In these locations, sediment from upper basins provides material subject to entrainment during debris flows, debris floods, or floods, and is a contributing factor for tributary fan development and channel aggradation in Mess Creek.

3.0 GEOHAZARDS

3.1 Mess Creek Access Route

Geohazards within terrain polygons intersecting the Mess Creek access route are listed in Appendix V, referenced to road kilometre. These include debris flows, debris floods, floods, rockfall, rock slides, and snow avalanches. The road alignment traverses 35 polygons rated terrain stability class IV; all contain till or colluvium with moderately steep (~30+) slopes. Eight polygons rated stability class V are intersected by the road alignment. In these cases, the stability rating refers to landslides initiating upslope of the road within the polygon; no cases were identified where the road alignment crosses existing terrain instabilities.

Debris flow hazard was identified at 10 channel crossings, including 3 locations where the road crosses a major fan (polygon nos. 246 at ~km 17), 618 at ~km 17.3, and 134 at ~km 26.1). Rockfall hazard exists where the road traverses below steep rockslopes (e.g. polygon 611); however, exposure to natural rockfall hazard is uncommon along the access route and of lower frequency than would likely occur on artificial rock cuts. One landslide interpreted as a rock slide was mapped at km 13.27, in terrain underlain by sandstone (Logan et al. 1997). The failure occurred within a ~100 m wide embayment above a ~80 m wide section of the proposed road. The embayment is poorly visible on the air photographs, and confirmation of this feature as a rock slide will require assessment in the field.

Snow avalanche hazard exists where the access road crosses avalanche vegetation scars below the treeline in the lower part of the runout zone. Flood hazard exists at creek crossings and from km 31.7 to 32.9 where the access route crosses Mess Creek floodplain.

The access road crosses several tributaries (e.g. polygons 134, 156, 246, 618) with upper channels underlain by highly fractured bedrock. Failures in upper portions of these channels have triggered debris flow activity and increased sediment supply, and have resulted in large fans at the confluence with Mess Creek. These channels are subject to the largest debris flows along the access route, particularly in the basin upstream of polygon no. 246, where slope sagging features (polygons 254, 256) exist above fractured volcaniclastic and granitic slopes undercut by gully erosion. More detailed field assessment of debris flow hazard and implications for bridge design and road alignment is warranted at these sites.

Extensive slope sagging¹ features were identified in polygons 491 and 501, about 700 m west (~100 m upslope) of road km 2.4. The upper part of the feature (1300 – 1500 m elevation) is underlain by quartz diorite, and the lower part (1200 – 1300 m elevation) by well foliated sericite schist (Logan et al. 1997). Slow, deep-seated sagging may be ongoing in

¹ slow, deep-seated, gravitational slope deformation

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft 4 Creek.doc

this area and is interpreted as possibly associated with gravitational loading and deformation of weaker underlying schist. However, rates of movement are unknown. Field surface investigation of this feature is recommended.

3.2 Tahltan Highland Route

3.2.1 South-most (More Creek) end of Tahltan Highland Route

Based on a review of approximately 1:60,000 scale airphotos (Appendix II), geohazards on the initial ascent north of More Creek include snow avalanches and rockfall (Figure 3.1). An approximate alignment option avoiding these geohazards is shown as an orange dashed line in Figure 3.1.

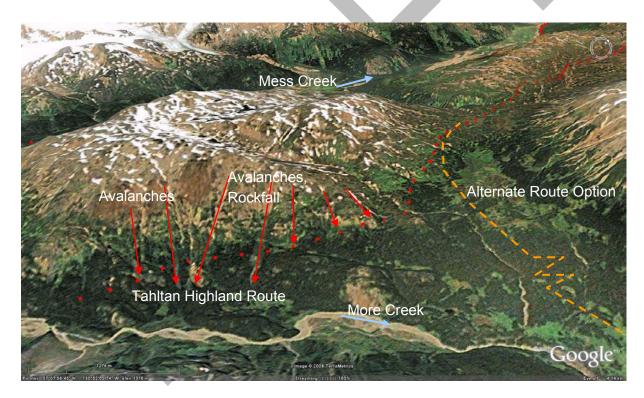
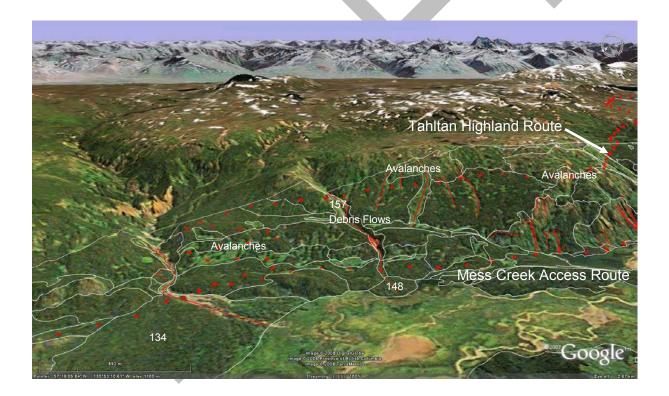



Figure 3.1. Ascent of Tahltan Highland Route from More Creek.

3.2.2 North-most (Mess Creek) end of Tahltan Highland Route

A Google Earth perspective of the Tahltan highland route descending northwest to Mess Creek is shown in Figure 3.2. This section was noted by Copper Fox as of concern from a terrain stability and geohazards perspective, and involves an approximately 600 m descent from the highland to Mess Creek. Through this section, the road alignment crosses primarily stability classes III and IV terrain, with slope gradients averaging 15° to 35°, and up to ~45° in polygon 157 (terrain stability class V). Hazards include one debris flow gully (polygon 157) and several short (~200 m) slopes subject to snow avalanche hazard (Figure 3.2). The debris flow gully in polygon 157 is deeply incised and would require detailed assessment of rockslope stability for the design of bridge abutments.

4.0 **RECOMMENDATIONS**

This report provides an overview assessment of surficial geology and geohazards for the Mess Creek Access route, and the parts of the Tahltan Highland route descending into Mess Creek and ascending from More Creek. It comprises Phase 1 of a geohazards and terrain stability investigation program for Schaft Creek.

The following work is recommended for Phase 2 of BGC's geohazard assessment for the Schaft Creek project. A proposed work plan will be provided under separate cover.

Access Route:

- Field checking to verify terrain stability mapping conducted for Phase 1;
- addition of potential sediment delivery rating to polygons intersecting the proposed access road (rating of the potential for surface erosion to transport sediment to valley bottom streams);
- linear geohazard assessment of the proposed access road;
- terrain stability field assessment (TSFA)¹ including a geotechnical review of the design for road sections with cut and fill slopes ≥ 5 m high in soil²;
- preparation of an Avalanche Atlas (CAA 2002);
- review of selected sections of the geometric design for the proposed access road;
- estimation of design flows at channel crossings;
- identification of geohazard mitigation options; and
- identification of road sections that will require more detailed investigations and/or supervision by a qualified registered professional during construction.

Minesite and Tailings:

- Expansion of the terrain stability and geohazard mapping study area to include the minesite;
- field assessment of glacier outburst flood hazard;
- provision of laser photocopies of terrain mapped airphotos to use as a basis for the surficial geological component of Terrestrial Ecosystem (TEM) mapping;
- field checking to verify terrain stability mapping and geohazards interpretations;
- preparation of an Avalanche Atlas (CAA 2002);
- overview description of landslide and snow avalanche geohazards with the potential to affect proposed facilities;
- identification of geohazard mitigation options; and
- identification of any requirements for landslide instrumentation.

² To be completed in close communication with McElhanney Consulting Services Ltd.

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft 7 Creek.doc

5.0 CLOSURE

We trust the information provided in this report meets your requirements. If you have any questions or comments, or if we can be of further assistance, please do not hesitate to contact the undersigned.

Yours sincerely, BGC ENGINEERING INC. Der:
Kris Holm, M.Sc., P.Geo.
Project Geoscientist
Reviewed by:
Aatthias Jakob, Ph.D., P.Geo.
Senior Geoscientist

6.0 **REFERENCES**

- Coulson, C.H. and Obedkoff, W. 1998. *British Columbia Streamflow Inventory*. Water Inventory Section, Resources Inventory Branch, B.C. Ministry of Environment, Lands, and Parks. Victoria, B.C.
- Giroux, G., and Ostensoe, E., 2004. Summary Report, Status and Resource Estimate, Schaft Creek Property, Northwestern British Columbia. Report prepared for 955528 Alberta Ltd., 96 pp.
- Howes, D.E. and E. Kenk. (eds.) 1997. Terrain Classification System for British Columbia, Version 2. A system for the classification of surficial materials, landforms and geological processes of British Columbia. Resource Inventory Branch, Ministry of Environment, Lands and Parks, Province of B.C. Victoria, B.C. 100pp.
- Koch, J., 2006. Holocene glacier fluctuations in Garibaldi Provincial Park, southern coast mountains, British Columbia. PhD. Thesis, Simon Fraser University, 200 pp.
- Logan, J.M., Drobe, J.R., Koyanagi, V.M., and Elsby, D.C., 1997. Geology of the Forrest Kerr – Mess Creek Area, Northwestern British Columbia (104B/10, 15, & 104G/2 & 7W), Ministry of Employment and Investment, Geoscience Map 1997-3, 1:100,000 scale.
- McCuaig, S., and Roberts, C., 2002. Topographically-independent ice flow in northwestern British Columbia: implications for Cordilleran Ice Sheet reconstruction. Journal of Quaternary Science 17 (4), p. 341-348.
- Ministry of Forests, 1999. Mapping and Assessing Terrain Stability Guidebook. Website URL: www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/terrain/index.htm
- Rescan Tahltan Environmental Consultants Inc., 2006. Schaft Creek Project 2006 Hydrology Baseline Report. Report prepared for Copper Fox Metals Inc., 57 pp.
- Resource Inventory Committee, 1996. Guidelines and Standards to Terrain Mapping in British Columbia. Guidelines prepared by the Resource Inventory Committee Surficial Geology Task Group. 131 pp.
- Stumpf, A., Broster, B., and Levson, V., 2000. Multiphase flow of the late Wisconsinan Cordilleran ice sheet in western Canada. GSA Bulletin, 112 (12), p. 1850-1863.
- Thompson, D., Van Hollen, D., Osborn, G., Ryane, C., Menounos, B., Clague, J., Koch, J., Riedel, J., Scout, K., and Reasoner, M., 2006. Did Neoglaciation begin as early as 6400 years ago? Geological Society of America *Abstracts with Programs*, 38 (7), p. 236.

APPENDIX I

Explanation of Terrain Mapping Symbols

(1a) POLYGON LABELS

Rk

e.g.

	Detailed Terrain Stability Mapping		ability Mapping			
Terrair	1	Polygon number	34			
Мар		Terrain symbol	dzsMb-V			
		Soil drainage	m			
(1b) TEF	(1b) TERRAIN SYMBOLS					
Example:						
	texture	aCk - Rb				
surficial materials surface expression geomorphological process sub- geomorphological process						
Composite symbols:		Up to three letters may be used to describe any characteristic.				
		Processes follow the dash "-" symbol.				
e.g.	Mv. Rk	indicates "Mv" and "Rk" are	roughly equal in extent			
	Mv/Rk	indicates "Mv" is more exten	sive than "Rk" (about 2/1 or 3/2)			
	Mv//Rk	indicates "Mv" is more exten	sive than "Rk" (about 3/1 or 4/1)			
	<u>/Mv</u>	indicates "Rk" is partially but	ried by "Mv"			

<u>Stratigraphic Symbols</u>: When one or more surficial materials overlie a different material or bedrock.

Mv()Rr means that "Mv" overlies "Rr"

(2) TEXTURE

Specific Clastic Terms

С	Clay	<2 µm		
Z	Silt	62.5 – 2 μm		
S	Sand	2 mm – 62.5 µm		
р	Pebbles	2 – 64 mm		
k	Cobbles	64 – 256 mm		
b	Boulders	>256 mm; predominantly boulders		
а	Blocks	angular boulders; predominantly blocks		
Corr	Common Clastic Terms			

Common Clastic Terms

d	Mixed fragments	Round and angular particles of all sizes
х	Angular fragments	Mixture of rubble (r) blocks (a)
g	Gravel	Mixture of pebbles (p), cobbles (k), boulders (b), and up to 20% sand
r	Rubble	Angular particles 2 – 256 mm
m	Mud	Mixture of sand (s) and silt (z) and minor clay

(3) MATERIALS

		Products of gravitational slope movements; materials derived
С	Callenting	
	Colluvium	from local bedrock and major deposits derived from drift;
		includes talus and landslide deposits.
D	Weathered Bedrock	Bedrock modified in situ by mechanical and chemical
		weathering.
E	Eolian sediments	Sand and silt transported and deposited by wind; includes
		loess.
F	Fluvial sediments	Sands and gravels transported and deposited by streams and
	Fluvial sediments	rivers; floodplains, terraces and alluvial fans.
F ^G	Clasiafluvial andimant-	Sands and gravels transported and deposited by meltwater
F	Glaciofluvial sediments	streams; includes kames, esters and outwash plains.
1	Ice	Permanent snow and ice; glaciers
L	Lacustrine sediments	Fine sand, silt and clay deposited in lakes and littoral.
L ^G	Glaciolacustrine sediments	Fine sand, silt and clay deposited in ice-dammed lakes and
L	Giaciolacustiline seuiments	littoral areas.
		Material deposited by glaciers without modification by flowing
	Till	water. Typically consists of a mixture of pebbles, cobbles and
Μ		boulders in a matrix of sand, silt and clay; diamicton. Includes
		up to 20% bedrock and/or colluvium.
0	Ormania materiale	Material resulting from the accumulation of decaying vegetative
0	Organic materials	matter; includes peat and organic soils.
_		Outcrops, and bedrock within a few centimeters of the surface.
R	Bedrock	Includes up to 20% colluvium.
		Materials in such close proximity that they cannot be separated
U	Undifferentiated materials	at the scale of the mapping. Two subtypes, U_1 and U_2 , are
		identified and discussed in the text.
L		

(4) SURFACE EXPRESSION

а	moderate slope(s)	predominantly planar slopes; 15-26° (28 – 49%)
b	Blanket	material >1-2 m thick with topography derived from underlying
		bedrock (which may not be mapped) or surficial material
С	Cone	a fan-shaped surface that is a sector of a cone; slopes 15° (27%) and steeper
d	Depression	enclosed depressions
f	Fan	a fan-shaped surface that is a sector of a cone; slopes 3-15° (5- 27%)
h	Hummocky topography	steep-sided hillocks and hollows; many slopes 15° and steeper
j	Gentle slope(s)	predominantly planar slopes; 4-15° (6 – 27%)
k	moderately steep slope	predominantly planar slopes; 26-35° (50 – 70%)
m	Rolling topography	linear rises and depressions; <15° (27%)
р	Plain	0-3° (0-5%)
r	Ridged topography	linear rises and depressions with many slopes 15° and steeper
S	Steep slope(s)	slopes steeper than 35° (>70%)
t	Terraced	stepped topography and benchlands
u	Undulating topography	hillocks and hollows; slopes predominantly <15°
		material <1-2 m thick with topography derived from underlying
V	Veneer	bedrock (may not be mapped) or surficial materials; may include
		outcrops of underlying material.
w	Mantle	mantle of variable thickness

(-)		
Α	Avalanches	Slopes modified by frequent snow avalanches
F	Slow mass movement	Slope experiencing slow mass movement, such as sliding or
	Slow mass movement	slumping
F"	Initiation zone	Initiation zone of slow mass movement, such as sliding or
Г		slumping
R	Rapid mass movement	Slope or parts of slope affected by processes such as debris
IX .	Rapiu mass movement	flows, debris slides and avalanches, and rockfall
R"	Rapid mass movement	Slope or parts of slope affected by initiation of processes such
ĸ	initiation zone	as debris flows, debris slides and avalanches, and rockfall
S	Solifluction	Slope modified by slow downslope movement of seasonally
0	Solindenon	unfrozen regolith.
U	Inundated	Areas submerged in standing water from a seasonally high
0	Inunualeu	watertable.
V	Gully erosion	slope affected by gully erosion.
Z	General periglacial	Solifluction, nivation and cryoturbation occurring together in a
Ζ	processes	single terrain unit.

(5) GEOMORPHOLOGICAL PROCESSES

Mass Movement SUB-Classes

-Fm	bedrock slump
-Fk	bedrock slope sagging and tension cracks
-Fc	soil creep
-Fu, -Ru	slump in surficial material
-R	rapid mass movement
-Rb	rock fall
-Rd	debris flow
-Rbd	rockfall on mid to upper slopes transforming to
	debris flows on mid to lower slopes
-Rr	rock avalanche
-Rs,	debris avalanche
-Rd ₂	debris flood

(6) SOIL DRAINAGE CLASSES

r	Rapidly drained	water is removed from the soil rapidly in relation to supply
w	well-drained	water is removed from the soil readily but not rapidly
m	moderately well-drained	water is removed from the soil somewhat slowly in relation to
		supply
		water is removed from the soil sufficiently slowly in relation to
i	Imperfectly drained	supply to keep the soil wet for a significant part of the growing
		season
		water is removed so slowly in relation to supply that the soil
р	poorly drained	remains wet for a comparatively large part of the time the soil is
		not frozen
		water is removed from the soil so slowly that the water table
v	very poorly drained	remains at or on the surface for the greater part of the time the
		soil is not frozen

(8) BOUNDARY LINES AND FIELD CHECK SYMBOLS

Terrain Polygon Boundary Lines:

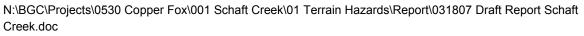
definite boundary indefinite, approximate or gradational boundary assumed or arbitrary boundary

Ground check site
[•] 23

APPENDIX II

List of Airphotos

Mess Creek


Date Flown	Approx. Scale	Flightline Numbe	er Photograph Number
Aug. 15, 2007	1:10,000	1	116-123
Aug. 15, 2007	1:10,000	2	124-138
Aug. 15, 2007	1:10,000	3	139-143
Aug. 15, 2007	1:10,000	4	144-160
Aug. 15, 2007	1:10,000	5	161-173
Aug. 15, 2007	1:10,000	6	174-180
Aug. 15, 2007	1:10,000	7	181-190
Aug. 15, 2007	1:10,000	8	191-204
Aug. 15, 2007	1:10,000	9	206-234
Aug. 15, 2007	1:10,000	10	243-265
Aug. 15, 2007	1:10,000	11	269-283
Aug. 15, 2007	1:10,000	12	286-296
Sept. 15, 2006	1:20,000	06-114 (Line 6)	39-43
Sept. 15, 2006	1:20,000	06-114 (Line 7)	59-64

More Creek & South End Tahltan Highland Route

1974 1:60,000 BC56	512 11-14
--------------------	-----------

APPENDIX III

Bedrock Geology Intersected by the Proposed Access Route

From		Goologia Fastura ¹
 km) 0	<u>To (km)</u>	Geologic Feature ¹
0 4.67	4.67 6.34	ImDSqs Qal
4.67 4.67	6.34 4.67	Gai Fault: Unknown Type
4.07 6.34	4.07	ImDSqs
7.57	9.48	ImDSqs
9.48	9.40 9.8	ImDSst
9.40 9.48	9.8 9.48	Fault
9.40 9.8	9.48 10.09	IJcg
9.8 9.8	9.8	Fault: Extension Fault
9.0 10.09	9.8 10.34	Qal
10.09	10.94	IJcg
10.94	10.98	Qal
11.55	11.55	Fault: Extension Fault
11.65	11.89	ImDSst
11.89	12.14	Qal
12	12.14	Fault: Extension Fault
12.14	12.4	IJcg
12.14	12.49	Fault: Extension Fault
12.49	13.82	
13.59	13.59	Fault: Extension Fault
13.82	14.08	IJcg,Qal
14.08	14.35	LTmz,Qal
14.00	14.53	
14.73	15.8	LTmz
15.8	16.2	uTSs
16.2	16.56	uTmt
16.56		uTSs
17.03	17.03	Fault: Extension Fault
17.21	17.71	Qal
17.71	20.4	LTmz
20.4	21.23	Qal
21.23	25.79	
25.19		Fault: Extension Fault
25.79	26.24	
26.24	28.3	-
26.45	26.45	
28.3	31.67	uCSr
31.67	32.26	Qal
32.26	32.64	UCSmv
32.64	33.3	
32.77	32.77	
32.64	33.3	Qal
33.3	33.72	uCSb?
33.72	33.93	IPSc
33.93	34.74	uCSb?
34.74		Fault: Extension Fault
07.74	07.74	

To (km)	Geologic Feature ¹
35.85	uCSc?,IPSc?
36.42	LTpp
36.42	Fault: Extension Fault
36.69	uTSvt
39.5	Qal
	35.85 36.42 36.42 36.69

¹ Definitions for geologic feature symbols are provided in Appendix III. Geology is based on Geoscience Map 1997-3 (Logan et al. 1997).

APPENDIX IV

Geoscience Map 1997-3 Legend (Logan et al. 1997)

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft Creek.doc

QUATERNARY Qt Active hotspring, celoareous tufa deposits BIG RAVEN FORMATION Big RAVEN FORMATION Big RAVEN FORMATION Que Unconsolidated glacial till and poorty sorted alluvium PLEISTOCENE ARGTE LAKE FORMATION Divine-plagloclass-sugite basalt, subserial lava flows, pyroclastic brecola and juness of alluvie	
BIG RAVEN FORMATION BIG RAVEN FORMATION Biglioclasse-olivine phyric basalt, pyroclastic cone, tephra and lava flows Cat Unconsolidated glacial till and poorly sorted attivitum PLEISTOCENE AGCTIC LAKE FORMATION	
Rab Nahta Cons: Plagioclase-olivine phyric basalt, pyroclastic cone, tephra and lava flows Qa Unconsolidated glacial till and poorly sorted alluvium PLEISTOCENE ARCTIC LAKE FORMATION	
ARCTIC LAKE FORMATION	
Olivine-plagioclase-augite basalt, subaerial lava flows, pyroclastic breccia and Description	
TERTIARY- PLIOCENE SPECTRUM FORMATION	
Tar Exhile Hill Vent: Leucocratic peralkaline rhyolite and dark grey trachyte flows and subvolcanic infrusions	
NIDO FORMATION (KOUNUGU MEMBER) Dark grey, sphyric and microportyritic clivine basalt, subaerial flows, flow breccia and intercalated flovial gravel	
UPPER CRETACEOUS TO PALEOCENE SUSTUT GROUP	
uksa Chert-pebble congiomerate, quartzose sandstone, sittstone and carbonaceous shale, coaly layers and carbonaceous plant fragments	
MIDDLE TO UPPER JURASSIC	
BOWSER LAKE GROUP ASHMAN FORMATION	
Jep Greywacke, planar-bedded shale and minor crossbedded sandstone, local chert- pebble congiomerate and granule congiomerate lenses	
LOWER TO MIDDLE JURASSIC HAZELTON GROUP	
JHu Undifferentiated volcanic and associated sedimentary rocks	
SALMON RIVER FORMATION	
Jee Brecciated and fractured dark green and grey siliceous silistone Jeeg Polylithic congiomerate containing sedimentary, intermediate and felsic volcanic and subvolcanic clasts	
Dark grey to black, thin badded carbonaceous sillstone and fine, rusty-brown bioclastic sandstone, minor intermediate to felsic crystal tuff	
Pillow basit, brecia and tuff, interbedded white and grey, thin-laminated sliceous silistone and tuff.	
LOWER JURASSIC	
UNUK RIVER - BETTY CREEK - MOUNT DILLWORTH FORMATIONS UNIX RIVER - BETTY CREEK - MOUNT DILLWORTH FORMATIONS	
UHr Felsic welded-ash tuff, rhyolite lava and ashflow tuff	
Utten Tan-weathering sandstone, plagioclase crystal tuff, peperite flows, siltstone, carbonaceous plant fragments common	
UHa Black, graphitic sitistone, stratiform diagenetic pyrite to several percent Maroon-weathering, polylithic cobble to boulder conglomerate and coarse	
Marcon-weathering, polytithic cobbit to boulder conglemente and coarse sandstome, well badded, coardy-granded and quartx-rich, contains granitoid, volcanic and sedimentary clasts of Stikine assemblage and Stuhimi Group strata	
UPPER TRIASSIC STUHINI GROUP	
Undifferentiated volcanic and arc-derived sedimentary rocks NEWMONT LAKE GRABEN	
NEWMONT LAKE GRABEN Lessic and intermediate lapilli and plagioclase crystal tuff and pink flow-layered thyolite	
Intermediate volcanic conglomerate, sandstone and minor thin bedded siliceous limestone lenses	
Algal limestone, laminated, dark grey to black	
Marcon homblende-plagioclase porphyntic andesite braccia flows	
MESS LAKE VOI CANIC FACIES	
U>Spp Marcon and dark green pyroxene porphyritic, plagioclase porphyritic and aphyric- basalt flows and fragmental rocks	
UPBM Massive to weakly stratified, grey and mauve lapilli and crystal tuff Dark oney, massive placioclase porphyritic basalt flows and coarse-bladed	
Dark grey, massive plagioclase porphyritic basalt flows and coarse-bladed plagioclase and pyroxene porphyry dikes upset Dur-weathering mafic civine lagilit tufi, includes some serpentinized peridotite	
MODE CREEK SEDIMENTARY FACIES	
Medium bedded, pale green tuff and epiclastic rocks, orange-westhering augite phyric and aphyric basait flows and allis	
Thick bedded augite-beering volcaniclastic sandstone, interbeds of sharpstone congiomerate	
Uméstone grey to black, sparse crinoid fragments, minor argillaceous limestone and sity shale Khaki, well badded fuldspathic sandstone, limestone-bearing conglomerate and thin badded sitetrone.	
U-San I thin bedded silistone Massive, thin laminated black and brown calcareous silistone, interbedded with fine grained orange sandstone	
MIDDLE TRIASSIC	
Bleck, thin bedded carbonaceous and pyritic silty shale, grey sandstone and siliceous siltstone	
STIKINE ASSEMBLAGE Undifferentiated Paleozoic foliated volcanic and associated sedimentary rock	
LOWER PERMIAN	
Pee Medium bedded to massive fossillferous carbonate; deformed, thin layered carbonate of probable Permian age (IPSdc)	
Deformed, interlayered intermediate siliceous tuff and sedimentary rocks CARBONIFEROUS	
Cast Grey to light green phylitic sittsione, graphitic argillite, siliceous phylite/tuff and thin lenses of dark brown limestone	
UPPER CARBONIFEROUS UCse Grey, thin bedded, fetid and dolomitic limestone, minor interbeds of marcon and green tuff and charty sitistone	
UCsr Pink flow-layered and spherulitic rhyolite, sparsely feldspar porphyritic lava and	
UCSmv weaky welded ash-flow tuff beds	
UGSmr UGSmr Warcon andexic feldspa-phyric laplill and crystal tuff, includes unwelded to weaky welded ash-flow tuff beds Massive amygdaloidal, aphyric to plagioclase and pyroxene-phyric basalt and brecci flows	
Thick bedded, maroon volcanic conglomerate, clasts are augite and plagioclase-	
poorty sorted with tuff interbeds Thin bedded, siltstone, poorty bedded tuff, tuffaceous wacke and sandstone, lesser chert	
MID CARBONIFEROUS (SERPUKHOVIAN - BASHKIRIAN)	
mCse Grey, medium bedded to massive bioclastic limestone, locally with buff, silty dolomitic layers	
UPPER DEVONIAN AND LOWER CARBONIFEROUS (MISSISSIPPIAN)	
DMSv Undifferentiated basalt and andesite, hyaloclastite, pillowed and flow breccia rocks	
Massive to weakly foliated, dark green amygdaloidal basalt and related	

TERTIARY AND OLDER DIKES Aphytric andesite and basalt, (a); mafic plagioclase ± pyroxene porphyty, (pp); Iamprophyte, (i); felsic, (i); porphyttic syenite, (sy); basalt, (b) MIDDLE JURASSIC THREE SISTERS PLUTONIC SUITE (179 - 178 Ma) MJmz Yehiniko Pluton: Pink, medium to coarse-grained, equigranular homblende-biotite monzonite to granite MJa Dark green, medium-grained seriate-textured diorite, pyroxene gabbro EARLY JURASSIC AND YOUNGER EJa Medium-grained equigranular augite-plagioclase diorite and gabbro EARLY JURASSIC TEXAS CREEK PLUTONIC SUITE (195 - 189 Ma) EJmz Equigranular, pink, medium grained monzonite, grading to syenite at base EJg Homblende-blottle potassium feldspar megacrystic monzogranite and syenite MIDDLE TO LATE TRIASSIC STIKINE PLUTONIC SUITE (228 - 221 Me) Hickman Pluton: Medium to fine-grained, equigranular homblende diorite, homblende monzanite L>pd Medium-grained equigranular augite diorite and gabbro Pale green, stubby-plagioclase porphyritic homblende-pyroxene diorite EARLY MISSISSIPPIAN MORE CREEK PLUTONIC SUITE (~ 355 Ma) EMg Equigranular to quartz-porphyritic biotite granite EMd Coarse to medium-grained, homblende diorite, homblende quartz monzonite LATE DEVONIAN FORREST KERR PLUTONIC SUITE (~ 370 Ma)
 LDg
 Medium to coarse-grained pink, biotite granite, monzonite and tonalite

 LDg
 Medium to coarse-grained homblende diorite, quartz diorite mainly equipmular, gnesis in pieces

 LDg
 Coarse-grained gabbro, homblendite, dinopyroxenite
 DEVONIAN EDa Foliated to equigranular, green pyroxene quartz diorite, locally chlorite schist AGE UNKNOWN Pink, equigranular biotite granite, monzonite, monzodiorite Aphanibic altered, granitoid rocks west of Forrest Kerr Creek and small isolated granodionte plugs SYMBOLS Geological boundary (defined, approximate, assumed) -Unconformity (defined, assumed)

Bedding; tops unknown (inclined, vertical)	"Y X
Bedding; tops observed (inclined, overturned)	my n
Igneous flow layering (Inclined, vertical)	811
Dominant foliation (Inclined, vertical)	22
Foliation; generation indicated by number of ticks	280
Lineation; bedding-cleavage intersection, m=mineral, s=stretching, ss=slickensides	2.3
Crenulation lineation; ages indicated by number of ticks (plunge indicated)	10-1
Joint (inclined, vertical)	30
Dike (inclined, vertical)	20
Vein (inclined, vertical)	3× 15
Axial trace of overturned antiform, synform (arrow indicates plunge)	At
Axial trace of upright antiform, synform (arrow indicates plunge)	
Fold axis of minor fold (arrow indicates plunge) m, s and z asymmetry	er.
Brittle fault zone (inclined, vertical)	"N.)
Extension fault; downthrown side indicated (defined, approximate, assumed)	<u> </u>
Contraction fault; teeth indicate upthrust side (defined, approximate, assumed)	<u>+</u> .
Cross-section line	11
Limit of mapped area • •	
Fossil locality (macrofossil, conodont, foraminifera, radiolarian)	000
Isotopic age locality (U/Pb, Ar/Ar, K/Ar, Rb/Sr)	0000
MINFILE occurrence; developed prospect, prospect, showing, number	0 10463
Surface work; adit, trench	×
Topographic contour (200 metre interval)	0051

FossII Identifications:

Mike J. Orchard, E. Wayne Bamber, Tim E. Tozer and Terry P. Poulton of the Geological Survey of Canada; Bernard L. Mamet of the University of Montreal and Fabrice Cordey.

Cart track

Age Determinations:

Uranium-lead geochronology by Bill C. McClelland at University of California, Santa Barbara; potassium-argon determinations by Joe Harakal at The University of British Columbia; argonargon dating by Peter Reynolds at Dalhousie University.

REFERENCES

- Anderson, R.G. and Bevler, M.L. (1990): A Note on Mesozoic and Tertiary K-Ar Geochronx of Pittonic Sultes, Iskut River Map area, Northwestern British Columbia; InCurrent Research, Part E, Geological Survey of Canada, Paper 90-1E, pages 141-147.
- Reteard and the second seco
- Kerr, F.A. (1948a): Lower Sikine and Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pages.
- Logan, J.M. and Drobe, J.R. (1993): Geology of the Mess Lake Area, Northwestern British Columbia (104G/7W); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1993-6.
- File 1993-6.
 Logan, J.M., Drobe, J.R. and Elsby, D.C. (1992): Geology, Geochemistry and Mineral Occurrences of the More Creek Area, Northwestern British Columbia (104G/2); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1982-5.
 Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990): Geology and Mineral Occurrences of the Forrest Kerr. Jskut River Area (104B/15); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-2.
- Logan, J.M. and Koyanagi, V.M. (1994): Geology and Mineral Deposits of the Galore Creek Area

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft Creek.doc

BGC ENGINEERING INC.

N:\BGC\Projects\0530 Copper Fox\001 Schaft Creek\01 Terrain Hazards\Report\031807 Draft Report Schaft

Souther (1992)

U>Svs	limestone lenses	Bedding; tops observed (inclined, overturned)
U>SI	Algal limestone, laminated, dark grey to black	ر سره
UPSva		محير حراي Dominant foliation (inclined, vertical)
	UP Swat Maroon lapilii and plagioclase crystal tuff and epiclastic rocks	ہے حوج جنج مربق Foliation; generation indicated by number of ticks
		Polaton; generation indicated by number of ticks
MESS	LAKE VOLCANIC FACIES	contraction interaction, ages interaction of framework (promyor indicated)
U>Spp	Maroon and dark green pyroxene porphyritic, plagioclase porphyritic and aphyric- basalt flows and fragmental rocks	ہم حوًا 👘 Joint (Inclined, vertical)
UPSVt	Massive to weakly stratified, grey and mauve lapili and crystal tuff	مَنْ عَنْ Dike (inclined, vertical)
U>Bvb		اسمر سولاة Vein (inclined, vertical)
	piaglociase and pyroxene porphyry dikes	Axial trace of overturned antiform, synform (arrow indicates plunge)
u>Smt	Dun-weathering matic olivine lapili tuff, includes some serpentinized peridotite	Axial trace of upright antiform, synform (arrow indicates plunge)
MORE	CREEK SEDIMENTARY FACIES	Avial trace of upright antiform, synform (arrow indicates plunge)
U>Sv	Medium bedded, pale green tuff and epiclastic rocks, orange-weathering augite phyric and aphyric basalt flows and sills	Brittle fault zone (inclined, vertical)
	¹ phyric and aphyric basait flows and sills Thick bedded augite-bearing volcaniclastic sandstone, interbeds of sharpstone	Extension fault; downthrown side indicated (defined, approximate, assumed)
U>Ss	conciomerate	Contraction fault; teeth indicate upthrust side (defined, approximate, assumed)
UPSc	Limestone, grey to black, sparse crinoid fragments, minor argillaceous limestone and sitty shale	Cross-section line
U>San	Khaki, well bedded feldspathic sandstone, limestone-bearing condomerate and	Limit of mapped area
u- osti	thin bedded sittstone	Fossil locality (macrofossil, conodont, foraminifera, radiolarian)
U>34	Assive, thin laminated black and brown calcareous siltstone, interbedded with fine grained orange sandstone	Isotopic age locality (U/Pb, Ar/Ar, K/Ar, Rb/Sr)
DLE TR		MINFILE occurrence; developed prospect, prospect, showing, number
JLE IK	Black, thin bedded carbonaceous and pyritic silty shale, grey sandstone and	Surface work; adit, trench
1128	siliceous sitstone	Topographic contour (200 metre interval)
	STIKINE ASSEMBLAGE	Cart track
\$Su	Undifferentiated Paleozoic foliated volcanic and associated sedimentary rock	
WER PER	RMIAN	Fossil Identifications:
IPsc	Medium bedded to massive fossiliferous carbonate; deformed, thin lavered	Mike J. Orchard, E. Wayne Bamber, Tim E. Tozer and Terry P. Poulton of the Geological Survey
H 00	carbonate of probable Permian age (IPSdc)	of Canada; Bernard L. Marnet of the University of Montreal and Fabrice Cordey.
IPsa	Deformed, Interlayered Intermediate siliceous tuff and sedimentary rocks	
RBONIFE	ERCIIS	Age Determinations:
CSat	Grey to light green phyllitic siltstone, graphitic argiilite, siliceous phyllite/tuff and thin lanses of dark brown limestone	Uranium-lead geochronology by Bill C. McClelland at University of California, Santa Barbara;
CSst	thin lenses of dark brown limestone	potassium-argon determinations by Joe Harakal at The University of British Columbia; argon-
PER CAP	RBONIFEROUS	argon dating by Peter Reynolds at Dalhousie University.
UCSc	Gray, thin bedded, fetid and dolomitic limestone, minor interbeds of maroon and	
	greén tuff and cherty siltstone	
uCsr	Pink flow-layered and spherulitic rhyolite, sparsely feldspar porphyritic lava and quartz feldspar-phyric flow breccia	REFERENCES
UCSmv	Maroon andesitic feldspar-ohvric lapilli and crystal tuff, includes unwelded to	Anderson, R.G. and Bevier, M.L. (1990): A Note on Mesozoic and Tertiary K-Ar Geochronometry of Piutonic Suitas, Biokut River Map area, Northwestern British Columbia; <i>in Current</i> Research, Part E, Geological Survey of Canada, Paper 90-1E, pages 141-147.
		Research, Part E, Geological Survey of Canada, Paper 90-1E, pages 141-147.
UCSb	and breccia flows	Holbek, P.M. (1988): Geology and Mineralization of the Stikine Assemblage, Mess Creek Area, Northwestern British Columbia; Unpublished M.Sc. Ihesis, The University of British Columbia, 174 pages.
UCSog	Thick bedded, maroon volcanic conglomerate, clasts are augite and plagioclase- phyric mafic and intermediate volcanic and subvolcanic rocks and limestone,	Northwestern British Columbia; Unpublished M.Sc. thesis, The University of British
ucsog	poorly sorted with tulf interbeds	Korr E & (1048a): Lower Stilling and Islant Diver Areas Deliteb Columbia: Contacted Survey of
UCSH	Thin bedded, siltstone, poorly bedded tuff, tuffaceous wacke and sandstone,	Kerr, F.A. (1948a): Lower Stikine and Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pages.
	lesser chert	Canada, Memoir 246, 94 pages. Logan, J.M. and Drobe, J.R. (1993): Geology of the Mess Lake Area, Northwestern British Columbia (1046/77W); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1993-6.
CARBO	NIFEROUS (SERPUKHOVIAN - BASHKIRIAN)	Columbia (104G/7W); B.C. Ministry of Energy, Mines and Petroleum Resources, Open
mCSc	Grey, medium bedded to massive bioclastic limestone, locally with buff, silty dolomitic layers	Loom IN Drobe IR and Elder D.C. (1992): Coolers: Coolerside and Minard
	Colorinoc rayors	Occurrences of the More Creek Area, Northwestern British Columbia (104G/2); B.C.
	/ONIAN AND LOWER CARBONIFEROUS (MISSISSIPPIAN)	Logan, J.M., Drobe, J.R. and Elsby, D.C. (1992): Geology, Geochemistry and Mineral Occurrences of the More Creak Area, Northwestern British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File 1992-5.
DMãs	Undifferentiated foliated sedimentary rocks	Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990): Geology and Mineral Occurrences of the
DMay	Undifferentiated basalt and andesite, hyaloclastite, pillowed and flow breccia rocks	Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990): Geology and Mineral Occurrences of the Forrest Kerr - Iskut River Area (1048/15); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-2.
	Messive to weakly foliated, dark green annotatolidal basalt and related	Logan, J.M. and Kovanagi, V.M. (1994); Geology and Mineral Deposits of the Galore Creek Area
	Messive to weakly foliated, dark green arrygdaloidal basalt and related hyaloclastite, pillowed flows (p) and scoriaceous tephra	Logan, J.M. and Koyanagi, V.M. (1994): Geology and Mineral Deposits of the Galore Creek Area (104G/3&4); B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 92, 96
	Pale pink, guartz-eye rhycilte and aphyric to weakly porphyritic rhycdacite flows and flow hreccias, includes orange-weathering, pyritic plagioclase porphyritic subvicesnic bodies DMsw Pale grey and green, intermediate to felsic, fine tuff, aphyric-dacite flows	pages.
-	porphyntic subvolcanic bodies	Read, P.B., Brown, R.L., Psutka, J.F., Moore, J.M., Journeay, M., Lane, L.S. and Orchard, M.J. (1989): Geology, More and Fornest Karr Creaks (parts of 1048/01 (5): 16.8 (1046/1, 2), Northwestern Filtsh Columbia; Geological Survey of Canada, Open File 2094.
	DMSN Pale grey and green, intermediate to felsic, fine tuff, aphyric-dacite flows	Northwestern British Columbia; Geological Survey of Canada, Open File 2094.
	and voicaniciastic rocks	Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44, 38 pages.
	DMSxt Pale to dark green, well bedded siliceous dust and ash tuff, scoriaceous matic tuff and minor pyritic felsic welded tuff	
		Souther, J.G. (1992): The Late Cenozoic, Mount Edziza Volcanic Complex, British Columbia; Geological Survey of Canada, Memoir 420, 320 pages.
	D MIDDLE DEVONIAN	Geological Survey of Canada, Memoir 420, 320 pages.
ImDstv	Green and grey intermediate to felsic plagioclase crystal tuff, breccia and flow rocks	
ImDsc	Deformed grey and buff thin layered to massive coralline marble and limestone	Recommended citation:
ImDSs	Pale green and grey thin bedded siltstone, sandstone and cherty tuff	Logan, J.M., Drobe, J.R., Koyanagi, V.M. and Elsby, D.C. (1997): Geology of the Forrest Kerr- Mess Creek Area, Northwestern British Columbia (1048/10, 15 & 1046/2 & 7W), Ministry of Employment and Investment, Geocelence May 1997-3, 11:00 000 scale.
ImDSet	Diabl amon shipits and and pumls eshipters till and miner beenting	Employment and Investment, Geoscience Map 1997-3, 1:100 000 scale.
	interbedded dust tuff and thin layered recrystallized limestone	
	White and pale green quartz sericite schist, well foliated and tightly crenulated	2
mDSga	Graphitic schist, black siliceous phyllite and chert	True North
		Grid North
	10/01/17	17.28 27.55
_	132* 130* GEOSCIENCE	MAP 1997-3
hr.	56° see also (Open i 1990-2, 1992-5,	File Maps 1993-6) Decreasing 12.9 Annually Universal Transverse Mecuter Gild Zone 9
1	Biver (1993-0) /J NAD 83 detum

variornavarous piant maginetitis common

Undifferentiated volcanic and arc-derived sedimentary rocks

UPPER TRIASSIC STUHINI GROUP

104K

Ge

104F

57*

Creek.doc

104J

Cre

1-3

Schaft .

Galore

Snip Min

104B

Ros

104A

-Mt 1104G

Lites Black, graphitic sitistione, stratiform diagenetic pyrite to several percent Marcon-weathering, polylithic cobble to boulder conglomerate and coarse sandatione, well bedded, poorly-graded and quartz-rich, containe granidot, coarse and sectional and section data of Stikine assemblese and Stuhini Group s

NEWMONT LAKE GRABEN Pelsic and intermediate lapili and plagioclase crystal tuff and pink flow-layered myolite

Intermediate volcanic conglomerate, sandstone and minor thin bedded siliceou

atic pyrite to several percent

Grid North 1" 26 7-3 Logan and Koyanagi (1989, 1994) 1041 Bradford and Brown (1993) this map may be obtained from Crown Publications Inc., Victoria, B.C. can be viewed over the internet through the website: Stikine Project - Geosci Maps 1993-3 to 1993-6 Read (1983, 1984) nt, J.A. and Brown, D.A. (1993); Geology, Mineral Occurrences and Geochemistry of the Tatsamenie Lake Areas, Northwestern Britlah Columbia (NTS 104K/1 and 65); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1993-1, 3 sheets. Read et al. (1989) n, D.A. (1993): Geology of the Tahitan Lake Area, Northwestern British Columbia (104G/13); Ministry of Energy, Mines and Petroleum Resources, Geoscience Map 1993-6 104J Gabrielse (1980) 104H D.A. and Gunning, M.H. (1993a): Geology of the Soud River Area, Northau Columbia (104G5): B.C. Ministry of Energy, Mines and Petroleum Resoun Geoscience Map 1987.3 Kerr (1948) D.A. and Gunning, M.H. (1990b): Geology of the Scud Glacter Area. Northy Columbia (104GR); S.C. Ministry of Energy, Mines and Petroleum Resourc Geordence Map 1993-4. 104K Souther (1971) A. Greig, C.J. and Gurning, M.H. (1993): Geology of the Yehiniko Lake and Chull wer Area, Northwestern British Columbia (104G/11W, 122 B.C. Ministry of Energy, lines and Patroleum Resources. Geodemics Man 1983). 104G Ise, H. (1980): Desse Lake Map Area: Geological Survey of Canada, Open File 707. P.B. (1983): Geology, Canay Creek (104.322 and Sikine Canyon (104.32W), Billish Columbia: Geological Survey of Canada, Open File 940. Souther (1972) 104F Souther (1959) L P.B. (1994): Klastiline River (104G/195); Eatus Latus (1041/13W), Caka Hill (1041/1W), and Stilkine Canyon (1041/12); Geological Survey of Canada, Open File 1080, eer, J.G. (1959): Chulline; Geological Survey of Canada, Map 7-1959.

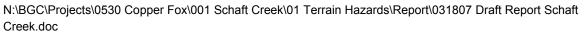
wr, J.G. (1959): (

G Un Be R face work; adit, trench rt track -----ssil identifications:

granadine proge	
SYMBOLS	
Seological boundary (defined, approximate, assumed)	
Inconformity (defined, assumed)	
	Y X
	23
	- 20
oliation; generation indicated by number of ticks	
ineation; bedding-cleavage intersection, m=mineral, s=stretching, ss=slickensides	8 3
renulation lineation; ages indicated by number of ticks (plunge indicated)	
like (inclined, vertical)	3
/ein (inclined, vertical)	
vial trace of overturned antiform, synform (arrow indicates plunge)	11
vial trace of upright antiform, synform (arrow indicates plunge)	-
old axis of minor fold (arrow indicates plunge) m, s and z asymmetry	1
ixtension fault; downthrown side indicated (defined, approximate, assumed)	~~~~
Contraction fault; teeth indicate upthrust side (defined, approximate, assumed)	-
	_
imit of mapped area	•
	00
otopic age locality (U/Pb, Ar/Ar, K/Ar, Rb/Sr)	00
IINFILE occurrence; developed prospect, prospect, showing, number	10405

 gd
 Pink, equigranular biotite granite, monzonite, monzodiorite

 gd
 Aphantilic altered, granitoid rocks west of Forrest Kerr Creek and small isolated granodiorite plugs


EUX Foliated to equigranular, green pyroxene quartz diorite, locally chlorite schist

AGE UNKNOWN

APPENDIX V

Surficial Geology and Geohazards For Terrain Polygons Intersecting Access Route Option 1.

Table IV.1 summarizes surficial geology and geohazards mapped for terrain polygons intersecting Access Route Option 1. Terrain data is representative of average conditions mapped for an entire terrain polygon and thus is not necessarily site-specific to the access route alignment. Within-polygon variations in surficial geology or geohazards are not described in the table.

From (Km)	To (Km)	Polygon Number	Terrain Symbol	Material Description	Drainage Class	Geohazards	Stability Class
0.00	0.02	573	Mw	Till	m		
				Colluvium			
0.02	0.30	562	Cv.Mv	and Till	w		Ш
0.30	0.35	553	Ор	Organic	vp		1
0.35	0.44	554	Mw	Till	m		II
0.44	0.49	553	Ор	Organic	vp		
0.49	0.70	555	Mb	Till	i		
0.70	0.84	551	Mw	Till	m		
0.84	0.92	550	Cv//Rks	Rock and Colluvium	w		IV
0.92	1.94	514	Mb.Cb	Colluvium and Till	m		III
1.94	2.28	498	Cf-Rd	Colluvium	i	Rd	11
2.28	2.96	489	Cv//Rs- R"bA	Rock and Colluvium	w	R"bA	V
2.96	3.26	488	Cv//Rks	Rock and Colluvium	w		IV
3.26	3.99	471	Cv/Rs-R"b	Rock and Colluvium	w	R"b	v
3.99	4.02	443	Fp	Fluvial	i		й П
				Colluvium			
				and Till and			
4.02	4.12	475	Cv/Mv/Rks	Rock	m-w		IV
4.12	4.19	478	Μv	Till	m		11
4.19	4.23	477	Cv.Rs-V	Rock and Colluvium	m		IV
				Colluvium and Till and			
4.23	4.44	475	Ćv/Mv/Rks	Rock	m-w		IV
4.44	4.52	476	Cvb/Rs-V	Rock and Colluvium	m		IV
4 50				Colluvium and Till and			
4.52	5.04	475	Cv/Mv/Rks	Rock	m-w		IV
5.04	5.64	449		Colluvium	m-w		IV
5.64	5.68	445	Cvb//Rs- R"bA	Rock and Colluvium	w-r	R"bA	V
5.68	6.03	448	Cvb	Colluvium	m		

 Table IV.1.
 Surficial Geology and Geohazards, Schaft Creek Access Route Option 1.

From	То	Polygon	Terrain	Material	Drainage		Stability
(Km)	(Km)	Number	Symbol	Description	Class	Geohazards	Class
			Cvb//Rs-	Rock and			
6.03	6.10	445	R"bA	Colluvium	w-r	R"bA	V
6.10	6.31	444	Cv	Colluvium	w		IV
6.31	6.37	389	Ff-Rd2	Fluvial	i	Rd2	11
				Rock and			
6.37	6.39	453	Cc//Rs	Colluvium	w-r		IV
			a	Rock and			
6.39	7.19	396	Cvb//Rk	Colluvium	w		IV
- 10				Rock and			n <i>(</i>
7.19	7.59	395	Cvb/Rs	Colluvium	W		IV
7.59	7.62	397	Cvb-VA	Colluvium	Ì	A	IV
7.62	7.65	398	Cv	Colluvium	W		IV
	4	004		Rock and		•	n /
7.65	7.74	394	Cvb//Rs-VA	Colluvium	m	A	IV
7 7 4	0.40	004		Colluvium			N /
7.74	8.12	391	Cv//Mv	and Till	m		IV
0.40	0.00	200		Rock and		•	N7
8.12	8.20	386	Cvb//Rs-AV	Colluvium	W	A	IV
0.00	0.44	200		Rock and			N7
8.20	8.44	380	Cv/Rs	Colluvium			IV
8.44	9.09	379	Cvb.Mvb	Colluvium and Till	m		111
9.09	9.13	373	Cvb-ARd	Colluvium	m m	RdA	IV
9.13	9.13	376	Mvb	Till	m	NuA	
3.15	5.20	570		Rock and			
9.20	9.25	375	Cvb//Rs-A	Colluvium	w	А	ш
5.20	5.25	515	OVD/ITK3-A	Colluvium		Λ	
9.25	9.82	366	Mvb/Cvb	and Till	m		111
9.82	10.45	660	Cv	Colluvium	w		IV
10.45	10.40	363	Cv/Rk-A	Colluvium	m	А	
10.10	10.07	000	O mar n	Colluvium			
10.67	10.87	362	Cv/Mv	and Till	m		111
10.01	10.07	002	0,,,,,,,	Colluvium			
10.87	10.99	347	/Cvb()Mb-A	and Till	m	А	11
10.99	11.49	346	Mw	Till	m	-	
11.49	11.84	345	Cv-A	Colluvium	i	A	
11.84	11.91	343	Cvb-RdAV	Colluvium	m	RdA	
11.91	12.01	330	Cvb-A	Colluvium	m	A	
				Colluvium			
12.01	13.25	323	Mb-A	and Till	m	А	Ш

From (Km)	To (Km)	Polygon Number	Terrain Symbol	Material Description	Drainage Class	Geohazards	Stability Class
40.05	40.00			Rock and			
13.25	13.28	326	Cv/Rs-R"rA	Colluvium	m	R"rA	V
13.28	13.42	198	FAp-U	Fluvial	m-vp		11
13.42	14.26	606	Cv/Mv	Rock and Colluvium	w		Ш
14.26	14.81	299	Mv.Cv	Colluvium and Till	m		111
14.20	14.01	233	1010.00	Rock and			111
14.81	14.90	282	/Mw()Rh	Till	m		П
				Colluvium			
14.90	15.16	299	Mv.Cv	and Till	m		
				Rock and			
15.16	15.29	282	/Mw()Rh	Till	m		11
45.00	45 40	200					
15.29	15.42	299	Mv.Cv	and Till Rock and	m		
15.42	15.45	282	/Mw()Rh	Till	m		Ш
10.42	10.40	202		Colluvium			
15.45	15.47	299	Mv.Cv	and Till	m		111
				Colluvium			
15.47	15.52	272	Mv/Cv-V	and Till	i		IV
				Colluvium			
15.52	16.55	271	Cv/Mv	and Till	m		
16.55	17.60	246	Cf-Rd	Colluvium	i	Rd	11
				Colluvium			
17.60	18.40	248	Cv.Mvb	and Till	m		
18.40	18.49	249	Mw	Till	m		
				Colluvium			
18.49	18.63	248	Cv.Mvb	and Till	m		111
40.00	40.00	0.47		Rock and			N /
18.63	18.80	247	Cv/Rs	Colluvium	W		IV
18.80	19.60	610	Mv FArall	Till	m		
19.60	19.63	198	FAp-U	Fluvial	m-vp		11
19.63	20.09	612	Cv.Mvb	Colluvium and Till	m		IV
20.09	20.00	611	Cf-ARb	Colluvium	i	RbA	
20.19	20.66	616	Mvb	Till	m		111
20.66	21.28	618	Cf-Rd	Colluvium	i	Rd	
21.28	21.34	210	Cb	Colluvium	m		
21.34	21.64	204	Cv	Colluvium	w		IV
21.64	21.75	203	Mb	Till	m		11
21.75	21.99	202	Cb-RbA	Colluvium	i	RbA	11

From (Km)	To (Km)	Polygon Number	Terrain Symbol	Material Description	Drainage Class	Geohazards	Stability Class
<u> </u>				Rock and			
21.99	22.14	201	Rs.Cv-R"bA	Colluvium	r	R"bA	V
22.14	22.29	200	Cb-RbA	Colluvium	i	RbA	III
				Colluvium			
22.29	22.56	199	Cb.Mb	and Till	m		II
			Cv//Rs-	Rock and			
22.56	22.94	176	R"bA	Colluvium	W	R"bA	V
22.94	23.32	621	Mw	Till	m		
				Organic and			
23.32	23.51	171	Op.Mb	Till	р		
23.51	23.92	170	Mb	Till	i		
23.92	24.08	173	Mvb	Till	m		
24.08	24.48	150	Mb	Colluvium	m		
24.48	24.53	156	Cb-Rd	Colluvium	i	Rd	
24.53	25.10	147	Mw	Till	m		11
25.10	25.26	146	Cv.Mv/Rh	Colluvium and Till and Rock	w		
25.26	25.34	147	Mw	Till	m		11
				Colluvium and Till and			
25.34	25.49	146	Cv.Mv/Rh	Rock	W		
25.49	26.09	147	Mw	Till	m		
26.09	26.70	134	Ff-Rd2	Fluvial	i	Rd2	
26.70	27.70	124	Fp	Fluvial	i		
27.70	28.40	110	Mb	Till	m		
28.40	29.10	103	Mvb	Till	m		
29.10	29.17	102	Cv	Colluvium Rock and	W		IV
29.17	29.27	101	Rh/Cv	Colluvium	r		IV
29.27	29.65	99	Mb/Cv	Colluvium and Till	m		111
29.65	30.12	95	Cv	Colluvium	w		III
30.12	30.24	94	Rs-R"b	Rock		R"b	V
30.24	30.29	86	Rh/Cv	Rock and Colluvium	w		
30.29	30.68	85	Mw	Till	m		П
30.68	30.70	80	Cv-A	Colluvium	w	А	IV
30.70	30.88	83	Mvb	Till	m		
30.88	30.94	79	Cv.Mv	Colluvium and Till	w		111

From	То	Polygon	Terrain	Material	Drainage		Stability
(Km)	(Km)	Number	Symbol	Description	Class	Geohazards	Class
30.94	30.97	83	Mvb	Till	m		
20.07	24.02	00		Rock and			N7
30.97	31.03	82	Cv/Rk	Colluvium	W		IV
31.03	31.38	79	Cv.Mv	Colluvium and Till	w		ш
31.38	31.49	79	Cv.iviv Cv	Colluvium	W		IV
51.50	51.45	10	01	Colluvium	VV		10
31.49	31.61	79	Cv.Mv	and Till	w		ш
31.61	31.66	78	Cv	Colluvium	W		IV
01.01	01.00			Colluvium			
31.66	31.68	79	Cv.Mv	and Till	w		Ш
31.68	32.90	198	FAp-U	Fluvial	m-vp	U	11
32.90	33.38	590	Ff-Rd	Fluvial	i	Rd	
33.38	33.49	47	Cv	Colluvium	w		IV
				Rock and			
33.49	33.69	48	Cv.Rs	Colluvium	r		IV
33.69	34.06	47	Cv	Colluvium	W		IV
34.06	34.26	10	Mvb	Till	m		11
34.26	34.37	36	Mw	Till	m-i		
34.37	34.60	43	Μv	Till	w		III
34.60	35.05	36	Mw	Till	m-i		III
35.05	36.20	9	Mv/Cv()Rh	Colluvium and Till			
35.05	30.20	9	<u> </u>		W		111
36.20	36.85	5	Rs/Cv- RbdVA	Rock and Colluvium	w	R"bdA	IV
36.85	37.11	15	Mb	Till	m		
30,00	57.11	15	Rs/Cv-	Rock and	111		111
37.11	37.29	5	RbdVA	Colluvium	w	R"bdA	IV
37.29	38.84	15	Mb	Till	m		111
				Rock and			-
38.84	39.25	14	Mw()Rv	Till	m		П
39.25	39.31	13	Mw/Ov	Till	р		1
				Rock and			
39.31	39.52	14	Mw()Rv	Till	m		

